Proteomics of Mouse Heart Ventricles Reveals Mitochondria and Metabolism as Major Targets of a Post-Infarction Short-Acting GLP1Ra-Therapy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
15SDG23230013
American Heart Association
P01-HL112730
NIH HHS - United States
R01-HL132075
NIH HHS - United States
R01-HL144509
NIH HHS - United States
RVO:68081715
Czech Academy of Sciences
PubMed
34445425
PubMed Central
PMC8395861
DOI
10.3390/ijms22168711
PII: ijms22168711
Knihovny.cz E-zdroje
- Klíčová slova
- DMB, cellular respiration, early cardiac remodeling, glucagon-like peptide-1 receptor agonists, metabolism, mitochondrion, proteomics,
- MeSH
- agonisté receptoru pro glukagonu podobný peptid 1 MeSH
- chinoxaliny aplikace a dávkování farmakologie MeSH
- glykolýza MeSH
- mapy interakcí proteinů MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- oxidativní fosforylace MeSH
- proteomika metody MeSH
- remodelace komor účinky léků MeSH
- sarkoplazmatická Ca2+-ATPáza metabolismus MeSH
- srdeční komory metabolismus MeSH
- srdeční mitochondrie metabolismus MeSH
- výpočetní biologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- agonisté receptoru pro glukagonu podobný peptid 1 MeSH
- Atp2a2 protein, mouse MeSH Prohlížeč
- chinoxaliny MeSH
- sarkoplazmatická Ca2+-ATPáza MeSH
Cardiovascular disease is the main cause of death worldwide, making it crucial to search for new therapies to mitigate major adverse cardiac events (MACEs) after a cardiac ischemic episode. Drugs in the class of the glucagon-like peptide-1 receptor agonists (GLP1Ra) have demonstrated benefits for heart function and reduced the incidence of MACE in patients with diabetes. Previously, we demonstrated that a short-acting GLP1Ra known as DMB (2-quinoxalinamine, 6,7-dichloro-N-[1,1-dimethylethyl]-3-[methylsulfonyl]-,6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline or compound 2, Sigma) also mitigates adverse postinfarction left ventricular remodeling and cardiac dysfunction in lean mice through activation of parkin-mediated mitophagy following infarction. Here, we combined proteomics with in silico analysis to characterize the range of effects of DMB in vivo throughout the course of early postinfarction remodeling. We demonstrate that the mitochondrion is a key target of DMB and mitochondrial respiration, oxidative phosphorylation and metabolic processes such as glycolysis and fatty acid beta-oxidation are the main biological processes being regulated by this compound in the heart. Moreover, the overexpression of proteins with hub properties identified by protein-protein interaction networks, such as Atp2a2, may also be important to the mechanism of action of DMB. Data are available via ProteomeXchange with identifier PXD027867.
Cedars Sinai Medical Center Smidt Heart Institute Beverly Hills CA 90048 USA
Institute of Analytical Chemistry of the Czech Academy of Sciences 60200 Brno Czech Republic
Zobrazit více v PubMed
Galli A., Lombardi F. Postinfarct left ventricular remodelling: A prevailing cause of heart failure. Cardiol. Res. Pract. 2016;2016:2579832. doi: 10.1155/2016/2579832. PubMed DOI PMC
Virani S.S., Alonso A., Benjamin E.J., Bittencourt M.S., Callaway C.W., Carson A.P., Chamberlain A.M., Chang A.R., Cheng S., Delling F.N., et al. Heart disease and stroke statistics–2020 update: A report from the american heart association. Circulation. 2020;141:e139–e596. doi: 10.1161/CIR.0000000000000757. PubMed DOI
McMurray J.J., Packer M., Desai A.S., Gong J., Lefkowitz M.P., Rizkala A.R., Rouleau J.L., Shi V.C., Solomon S.D., Swedberg K., et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 2014;371:993–1004. doi: 10.1056/NEJMoa1409077. PubMed DOI
Dai W., Hale S., Kloner R.A. Delayed therapeutic hypothermia protects against the myocardial no-reflow phenomenon independently of myocardial infarct size in a rat ischemia/reperfusion model. Int. J. Cardiol. 2017;236:400–404. doi: 10.1016/j.ijcard.2017.01.079. PubMed DOI
Hernandez A.F., Green J.B., Janmohamed S., D’Agostino R.B., Granger C.B., Jones N.P., Leiter L.A., Rosenberg A.E., Sigmon K.N., Somerville M.C., et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (harmony outcomes): A double-blind, randomised placebo-controlled trial. Lancet. 2018;392:1519–1529. doi: 10.1016/S0140-6736(18)32261-X. PubMed DOI
Marso S.P., Daniels G.H., Brown-Frandsen K., Kristensen P., Mann J.F., Nauck M.A., Nissen S.E., Pocock S., Poulter N.R., Ravn L.S., et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 2016;375:311–322. doi: 10.1056/NEJMoa1603827. PubMed DOI PMC
Marso S.P., Bain S.C., Consoli A., Eliaschewitz F.G., Jódar E., Leiter L.A., Lingvay I., Rosenstock J., Seufert J., Warren M.L., et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2016;375:1834–1844. doi: 10.1056/NEJMoa1607141. PubMed DOI
Gottlieb R.A., Piplani H., Sin J., Sawaged S., Hamid S.M., Taylor D.J., de Freitas Germano J. At the heart of mitochondrial quality control: Many roads to the top. Cell. Mol. Life Sci. 2021;78:3791–3801. doi: 10.1007/s00018-021-03772-3. PubMed DOI PMC
Andres A.M., Tucker K.C., Thomas A., Taylor D.J., Sengstock D., Jahania S.M., Dabir R., Pourpirali S., Brown J.A., Westbrook D.G., et al. Mitophagy and mitochondrial biogenesis in atrial tissue of patients undergoing heart surgery with cardiopulmonary bypass. JCI Insight. 2017;2:e89303. doi: 10.1172/jci.insight.89303. PubMed DOI PMC
Bravo-San Pedro J.M., Kroemer G., Galluzzi L. Autophagy and mitophagy in cardiovascular disease. Circ. Res. 2017;120:1812–1824. doi: 10.1161/CIRCRESAHA.117.311082. PubMed DOI
Qiao H., Ren H., Du H., Zhang M., Xiong X., Lv R. Liraglutide repairs the infarcted heart: The role of the sirt1/parkin/mitophagy pathway. Mol. Med. Rep. 2018;17:3722–3734. doi: 10.3892/mmr.2018.8371. PubMed DOI PMC
Kyhl K., Lonborg J., Hartmann B., Kissow H., Poulsen S.S., Ali H.E., Kjaer A., Dela F., Engstrom T., Treiman M. Lack of effect of prolonged treatment with liraglutide on cardiac remodeling in rats after acute myocardial infarction. Peptides. 2017;93:1–12. doi: 10.1016/j.peptides.2017.04.009. PubMed DOI
Germano J.F., Huang C., Sin J., Song Y., Tucker K.C., Taylor D.J.R., Saadaeijahromi H., Stotland A., Piplani H., Gottlieb R.A., et al. Intermittent use of a short-course glucagon-like peptide-1 receptor agonist therapy limits adverse cardiac remodeling via parkin-dependent mitochondrial turnover. Sci. Rep. 2020;10:8284. doi: 10.1038/s41598-020-64924-2. PubMed DOI PMC
Doenst T., Nguyen T.D., Abel E.D. Cardiac metabolism in heart failure: Implications beyond atp production. Circ. Res. 2013;113:709–724. doi: 10.1161/CIRCRESAHA.113.300376. PubMed DOI PMC
Burgoyne J.R., Mongue-Din H., Eaton P., Shah A.M. Redox signaling in cardiac physiology and pathology. Circ. Res. 2012;111:1091–1106. doi: 10.1161/CIRCRESAHA.111.255216. PubMed DOI
Zorov D.B., Juhaszova M., Sollott S.J. Mitochondrial reactive oxygen species (ros) and ros-induced ros release. Physiol. Rev. 2014;94:909–950. doi: 10.1152/physrev.00026.2013. PubMed DOI PMC
Münzel T., Camici G.G., Maack C., Bonetti N.R., Fuster V., Kovacic J.C. Impact of oxidative stress on the heart and vasculature: Part 2 of a 3-part series. J. Am. Coll. Cardiol. 2017;70:212–229. doi: 10.1016/j.jacc.2017.05.035. PubMed DOI PMC
Tanigaki K., Sundgren N., Khera A., Vongpatanasin W., Mineo C., Shaul P.W. Fcγ receptors and ligands and cardiovascular disease. Circ. Res. 2015;116:368–384. doi: 10.1161/CIRCRESAHA.116.302795. PubMed DOI PMC
Swirski F.K., Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013;339:161–166. doi: 10.1126/science.1230719. PubMed DOI PMC
Kearney C.J., Martin S.J. An inflammatory perspective on necroptosis. Mol. Cell. 2017;65:965–973. doi: 10.1016/j.molcel.2017.02.024. PubMed DOI
Frieler R.A., Nadimpalli S., Boland L.K., Xie A., Kooistra L.J., Song J., Chung Y., Cho K.W., Lumeng C.N., Wang M.M., et al. Depletion of macrophages in cd11b diphtheria toxin receptor mice induces brain inflammation and enhances inflammatory signaling during traumatic brain injury. Brain Res. 2015;1624:103–112. doi: 10.1016/j.brainres.2015.07.011. PubMed DOI PMC
Al Batran R., Almutairi M., Ussher J.R. Glucagon-like peptide-1 receptor mediated control of cardiac energy metabolism. Peptides. 2018;100:94–100. doi: 10.1016/j.peptides.2017.12.005. PubMed DOI
Bajic V.P., van Neste C., Obradovic M., Zafirovic S., Radak D., Bajic V.B., Essack M., Isenovic E.R. Glutathione “redox homeostasis” and its relation to cardiovascular disease. Oxid. Med. Cell Longev. 2019;2019:5028181. doi: 10.1155/2019/5028181. PubMed DOI PMC
Mariani J.A., Smolic A., Preovolos A., Byrne M.J., Power J.M., Kaye D.M. Augmentation of left ventricular mechanics by recirculation-mediated aav2/1-serca2a gene delivery in experimental heart failure. Eur. J. Heart Fail. 2011;13:247–253. doi: 10.1093/eurjhf/hfq234. PubMed DOI
Hayward C., Banner N.R., Morley-Smith A., Lyon A.R., Harding S.E. The current and future landscape of serca gene therapy for heart failure: A clinical perspective. Hum. Gene Ther. 2015;26:293–304. doi: 10.1089/hum.2015.018. PubMed DOI
Chu M., Novak S.M., Cover C., Wang A.A., Chinyere I.R., Juneman E.B., Zarnescu D.C., Wong P.K., Gregorio C.C. Increased cardiac arrhythmogenesis associated with gap junction remodeling with upregulation of rna-binding protein fxr1. Circulation. 2018;137:605–618. doi: 10.1161/CIRCULATIONAHA.117.028976. PubMed DOI PMC
Betrie A.H., Ayton S., Bush A.I., Angus J.A., Lei P., Wright C.E. Evidence of a cardiovascular function for microtubule-associated protein tau. J. Alzheimer’s Dis. 2017;56:849–860. doi: 10.3233/JAD-161093. PubMed DOI
Sumpter R., Sirasanagandla S., Fernández Á., Wei Y., Dong X., Franco L., Zou Z., Marchal C., Lee M.Y., Clapp D.W., et al. Fanconi anemia proteins function in mitophagy and immunity. Cell. 2016;165:867–881. doi: 10.1016/j.cell.2016.04.006. PubMed DOI PMC
Stark C., Breitkreutz B.J., Reguly T., Boucher L., Breitkreutz A., Tyers M. Biogrid: A general repository for interaction datasets. Nucleic Acids Res. 2006;34:D535–D539. doi: 10.1093/nar/gkj109. PubMed DOI PMC
Kohl M., Wiese S., Warscheid B. Cytoscape: Software for visualization and analysis of biological networks. Methods Mol. Biol. 2011;696:291–303. PubMed
Assenov Y., Ramírez F., Schelhorn S.E., Lengauer T., Albrecht M. Computing topological parameters of biological networks. Bioinformatics. 2008;24:282–284. doi: 10.1093/bioinformatics/btm554. PubMed DOI
He X., Zhang J. Why do hubs tend to be essential in protein networks? PLoS Genet. 2006;2:e88. doi: 10.1371/journal.pgen.0020088. PubMed DOI PMC
Sharma A., Cinti C., Capobianco E. Multitype network-guided target controllability in phenotypically characterized osteosarcoma: Role of tumor microenvironment. Front. Immunol. 2017;8:918. doi: 10.3389/fimmu.2017.00918. PubMed DOI PMC
Ge S.X., Jung D., Yao R. Shinygo: A graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:2628–2629. doi: 10.1093/bioinformatics/btz931. PubMed DOI PMC
Bindea G., Mlecnik B., Hackl H., Charoentong P., Tosolini M., Kirilovsky A., Fridman W.H., Pagès F., Trajanoski Z., Galon J. ClueGO: A cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25:1091–1093. doi: 10.1093/bioinformatics/btp101. PubMed DOI PMC