Proteomics of Mouse Heart Ventricles Reveals Mitochondria and Metabolism as Major Targets of a Post-Infarction Short-Acting GLP1Ra-Therapy

. 2021 Aug 13 ; 22 (16) : . [epub] 20210813

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34445425

Grantová podpora
15SDG23230013 American Heart Association
P01-HL112730 NIH HHS - United States
R01-HL132075 NIH HHS - United States
R01-HL144509 NIH HHS - United States
RVO:68081715 Czech Academy of Sciences

Cardiovascular disease is the main cause of death worldwide, making it crucial to search for new therapies to mitigate major adverse cardiac events (MACEs) after a cardiac ischemic episode. Drugs in the class of the glucagon-like peptide-1 receptor agonists (GLP1Ra) have demonstrated benefits for heart function and reduced the incidence of MACE in patients with diabetes. Previously, we demonstrated that a short-acting GLP1Ra known as DMB (2-quinoxalinamine, 6,7-dichloro-N-[1,1-dimethylethyl]-3-[methylsulfonyl]-,6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline or compound 2, Sigma) also mitigates adverse postinfarction left ventricular remodeling and cardiac dysfunction in lean mice through activation of parkin-mediated mitophagy following infarction. Here, we combined proteomics with in silico analysis to characterize the range of effects of DMB in vivo throughout the course of early postinfarction remodeling. We demonstrate that the mitochondrion is a key target of DMB and mitochondrial respiration, oxidative phosphorylation and metabolic processes such as glycolysis and fatty acid beta-oxidation are the main biological processes being regulated by this compound in the heart. Moreover, the overexpression of proteins with hub properties identified by protein-protein interaction networks, such as Atp2a2, may also be important to the mechanism of action of DMB. Data are available via ProteomeXchange with identifier PXD027867.

Zobrazit více v PubMed

Galli A., Lombardi F. Postinfarct left ventricular remodelling: A prevailing cause of heart failure. Cardiol. Res. Pract. 2016;2016:2579832. doi: 10.1155/2016/2579832. PubMed DOI PMC

Virani S.S., Alonso A., Benjamin E.J., Bittencourt M.S., Callaway C.W., Carson A.P., Chamberlain A.M., Chang A.R., Cheng S., Delling F.N., et al. Heart disease and stroke statistics–2020 update: A report from the american heart association. Circulation. 2020;141:e139–e596. doi: 10.1161/CIR.0000000000000757. PubMed DOI

McMurray J.J., Packer M., Desai A.S., Gong J., Lefkowitz M.P., Rizkala A.R., Rouleau J.L., Shi V.C., Solomon S.D., Swedberg K., et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 2014;371:993–1004. doi: 10.1056/NEJMoa1409077. PubMed DOI

Dai W., Hale S., Kloner R.A. Delayed therapeutic hypothermia protects against the myocardial no-reflow phenomenon independently of myocardial infarct size in a rat ischemia/reperfusion model. Int. J. Cardiol. 2017;236:400–404. doi: 10.1016/j.ijcard.2017.01.079. PubMed DOI

Hernandez A.F., Green J.B., Janmohamed S., D’Agostino R.B., Granger C.B., Jones N.P., Leiter L.A., Rosenberg A.E., Sigmon K.N., Somerville M.C., et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (harmony outcomes): A double-blind, randomised placebo-controlled trial. Lancet. 2018;392:1519–1529. doi: 10.1016/S0140-6736(18)32261-X. PubMed DOI

Marso S.P., Daniels G.H., Brown-Frandsen K., Kristensen P., Mann J.F., Nauck M.A., Nissen S.E., Pocock S., Poulter N.R., Ravn L.S., et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 2016;375:311–322. doi: 10.1056/NEJMoa1603827. PubMed DOI PMC

Marso S.P., Bain S.C., Consoli A., Eliaschewitz F.G., Jódar E., Leiter L.A., Lingvay I., Rosenstock J., Seufert J., Warren M.L., et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2016;375:1834–1844. doi: 10.1056/NEJMoa1607141. PubMed DOI

Gottlieb R.A., Piplani H., Sin J., Sawaged S., Hamid S.M., Taylor D.J., de Freitas Germano J. At the heart of mitochondrial quality control: Many roads to the top. Cell. Mol. Life Sci. 2021;78:3791–3801. doi: 10.1007/s00018-021-03772-3. PubMed DOI PMC

Andres A.M., Tucker K.C., Thomas A., Taylor D.J., Sengstock D., Jahania S.M., Dabir R., Pourpirali S., Brown J.A., Westbrook D.G., et al. Mitophagy and mitochondrial biogenesis in atrial tissue of patients undergoing heart surgery with cardiopulmonary bypass. JCI Insight. 2017;2:e89303. doi: 10.1172/jci.insight.89303. PubMed DOI PMC

Bravo-San Pedro J.M., Kroemer G., Galluzzi L. Autophagy and mitophagy in cardiovascular disease. Circ. Res. 2017;120:1812–1824. doi: 10.1161/CIRCRESAHA.117.311082. PubMed DOI

Qiao H., Ren H., Du H., Zhang M., Xiong X., Lv R. Liraglutide repairs the infarcted heart: The role of the sirt1/parkin/mitophagy pathway. Mol. Med. Rep. 2018;17:3722–3734. doi: 10.3892/mmr.2018.8371. PubMed DOI PMC

Kyhl K., Lonborg J., Hartmann B., Kissow H., Poulsen S.S., Ali H.E., Kjaer A., Dela F., Engstrom T., Treiman M. Lack of effect of prolonged treatment with liraglutide on cardiac remodeling in rats after acute myocardial infarction. Peptides. 2017;93:1–12. doi: 10.1016/j.peptides.2017.04.009. PubMed DOI

Germano J.F., Huang C., Sin J., Song Y., Tucker K.C., Taylor D.J.R., Saadaeijahromi H., Stotland A., Piplani H., Gottlieb R.A., et al. Intermittent use of a short-course glucagon-like peptide-1 receptor agonist therapy limits adverse cardiac remodeling via parkin-dependent mitochondrial turnover. Sci. Rep. 2020;10:8284. doi: 10.1038/s41598-020-64924-2. PubMed DOI PMC

Doenst T., Nguyen T.D., Abel E.D. Cardiac metabolism in heart failure: Implications beyond atp production. Circ. Res. 2013;113:709–724. doi: 10.1161/CIRCRESAHA.113.300376. PubMed DOI PMC

Burgoyne J.R., Mongue-Din H., Eaton P., Shah A.M. Redox signaling in cardiac physiology and pathology. Circ. Res. 2012;111:1091–1106. doi: 10.1161/CIRCRESAHA.111.255216. PubMed DOI

Zorov D.B., Juhaszova M., Sollott S.J. Mitochondrial reactive oxygen species (ros) and ros-induced ros release. Physiol. Rev. 2014;94:909–950. doi: 10.1152/physrev.00026.2013. PubMed DOI PMC

Münzel T., Camici G.G., Maack C., Bonetti N.R., Fuster V., Kovacic J.C. Impact of oxidative stress on the heart and vasculature: Part 2 of a 3-part series. J. Am. Coll. Cardiol. 2017;70:212–229. doi: 10.1016/j.jacc.2017.05.035. PubMed DOI PMC

Tanigaki K., Sundgren N., Khera A., Vongpatanasin W., Mineo C., Shaul P.W. Fcγ receptors and ligands and cardiovascular disease. Circ. Res. 2015;116:368–384. doi: 10.1161/CIRCRESAHA.116.302795. PubMed DOI PMC

Swirski F.K., Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013;339:161–166. doi: 10.1126/science.1230719. PubMed DOI PMC

Kearney C.J., Martin S.J. An inflammatory perspective on necroptosis. Mol. Cell. 2017;65:965–973. doi: 10.1016/j.molcel.2017.02.024. PubMed DOI

Frieler R.A., Nadimpalli S., Boland L.K., Xie A., Kooistra L.J., Song J., Chung Y., Cho K.W., Lumeng C.N., Wang M.M., et al. Depletion of macrophages in cd11b diphtheria toxin receptor mice induces brain inflammation and enhances inflammatory signaling during traumatic brain injury. Brain Res. 2015;1624:103–112. doi: 10.1016/j.brainres.2015.07.011. PubMed DOI PMC

Al Batran R., Almutairi M., Ussher J.R. Glucagon-like peptide-1 receptor mediated control of cardiac energy metabolism. Peptides. 2018;100:94–100. doi: 10.1016/j.peptides.2017.12.005. PubMed DOI

Bajic V.P., van Neste C., Obradovic M., Zafirovic S., Radak D., Bajic V.B., Essack M., Isenovic E.R. Glutathione “redox homeostasis” and its relation to cardiovascular disease. Oxid. Med. Cell Longev. 2019;2019:5028181. doi: 10.1155/2019/5028181. PubMed DOI PMC

Mariani J.A., Smolic A., Preovolos A., Byrne M.J., Power J.M., Kaye D.M. Augmentation of left ventricular mechanics by recirculation-mediated aav2/1-serca2a gene delivery in experimental heart failure. Eur. J. Heart Fail. 2011;13:247–253. doi: 10.1093/eurjhf/hfq234. PubMed DOI

Hayward C., Banner N.R., Morley-Smith A., Lyon A.R., Harding S.E. The current and future landscape of serca gene therapy for heart failure: A clinical perspective. Hum. Gene Ther. 2015;26:293–304. doi: 10.1089/hum.2015.018. PubMed DOI

Chu M., Novak S.M., Cover C., Wang A.A., Chinyere I.R., Juneman E.B., Zarnescu D.C., Wong P.K., Gregorio C.C. Increased cardiac arrhythmogenesis associated with gap junction remodeling with upregulation of rna-binding protein fxr1. Circulation. 2018;137:605–618. doi: 10.1161/CIRCULATIONAHA.117.028976. PubMed DOI PMC

Betrie A.H., Ayton S., Bush A.I., Angus J.A., Lei P., Wright C.E. Evidence of a cardiovascular function for microtubule-associated protein tau. J. Alzheimer’s Dis. 2017;56:849–860. doi: 10.3233/JAD-161093. PubMed DOI

Sumpter R., Sirasanagandla S., Fernández Á., Wei Y., Dong X., Franco L., Zou Z., Marchal C., Lee M.Y., Clapp D.W., et al. Fanconi anemia proteins function in mitophagy and immunity. Cell. 2016;165:867–881. doi: 10.1016/j.cell.2016.04.006. PubMed DOI PMC

Stark C., Breitkreutz B.J., Reguly T., Boucher L., Breitkreutz A., Tyers M. Biogrid: A general repository for interaction datasets. Nucleic Acids Res. 2006;34:D535–D539. doi: 10.1093/nar/gkj109. PubMed DOI PMC

Kohl M., Wiese S., Warscheid B. Cytoscape: Software for visualization and analysis of biological networks. Methods Mol. Biol. 2011;696:291–303. PubMed

Assenov Y., Ramírez F., Schelhorn S.E., Lengauer T., Albrecht M. Computing topological parameters of biological networks. Bioinformatics. 2008;24:282–284. doi: 10.1093/bioinformatics/btm554. PubMed DOI

He X., Zhang J. Why do hubs tend to be essential in protein networks? PLoS Genet. 2006;2:e88. doi: 10.1371/journal.pgen.0020088. PubMed DOI PMC

Sharma A., Cinti C., Capobianco E. Multitype network-guided target controllability in phenotypically characterized osteosarcoma: Role of tumor microenvironment. Front. Immunol. 2017;8:918. doi: 10.3389/fimmu.2017.00918. PubMed DOI PMC

Ge S.X., Jung D., Yao R. Shinygo: A graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:2628–2629. doi: 10.1093/bioinformatics/btz931. PubMed DOI PMC

Bindea G., Mlecnik B., Hackl H., Charoentong P., Tosolini M., Kirilovsky A., Fridman W.H., Pagès F., Trajanoski Z., Galon J. ClueGO: A cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25:1091–1093. doi: 10.1093/bioinformatics/btp101. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Methodological Aspects of μLC-MS/MS for Wide-Scale Proteomic Analysis of Anthracycline-Induced Cardiomyopathy

. 2025 Apr 01 ; 10 (12) : 11980-11993. [epub] 20250318

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...