Influence of Functional Group Concentration on Hypercrosslinking of Poly(vinylbenzyl chloride) PolyHIPEs: Upgrading Macroporosity with Nanoporosity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P2 006
Javna Agencija za Raziskovalno Dejavnost RS
PubMed
34451260
PubMed Central
PMC8399335
DOI
10.3390/polym13162721
PII: polym13162721
Knihovny.cz E-zdroje
- Klíčová slova
- hierarchically porous polymers, hypercrosslinking, macroporosity, nanoporosity, poly(4-vinylbenzyl chloride), polyHIPE,
- Publikační typ
- časopisecké články MeSH
With the aim to study the influence of monomer ratio in poly(high internal phase emulsions) (polyHIPEs) on the polymer network architecture and morphology of poly(vinylbenzyl chloride-co-divinylbenzene-co-styrene) after hypercrosslinking via the internal Friedel-Crafts process, polyHIPEs with 80% overall porosity were prepared at three different initial crosslinking degrees, namely 2, 5, and 10 mol.%. All had typical interconnected cellular morphology, which was not affected by the hypercrosslinking process. Nitrogen adsorption and desorption experiments with BET and t-plot modelling were used for the evaluation of the newly introduced nanoporosity and in combination with elemental analysis for the evaluation of the extent of the hypercrosslinking. It was found that, for all three initial crosslinking degrees, the minimum amount of functional monomer, 4-vinylbenzyl chloride, was approximately 30 mol.%. Hypercrosslinking of polymers with lower concentrations of functional monomer did not result in induction of nanoporosity while the initial crosslinking degree had a much lower impact on the formation of nanoporosity.
Zobrazit více v PubMed
Davankov V.A., Rogozhin V., Tsyurupa M.P. Macronet Polystyrene Structures for Ionites and Method of Producing Same. 3,729,457. U.S. Patent. 1973 Apr 24;
Tsyurupa M.P., Davankov V.A. Hypercrosslinked polymers: Basic principle of preparing the new class of polymeric materials. React. Funct. Polym. 2002;53:193–203. doi: 10.1016/S1381-5148(02)00173-6. DOI
Veverka P., Jeřábek K. Influence of hypercrosslinking on adsorption and absorption on or in styrenic polymers. React. Funct. Polym. 2004;59:71–79. doi: 10.1016/j.reactfunctpolym.2003.12.008. DOI
Ahn J.H., Jang J.E., Oh C.G., Ihm S.K., Cortez J., Sherrington D.C. Rapid generation and control of microporosity, bimodal pore size distribution, and surface area in Davankov-type hyper-cross-linked resins. Macromolecules. 2006;39:627–632. doi: 10.1021/ma051152n. DOI
Veverka P., Jeřábek K. Mechanism of hypercrosslinking of chloromethylated styrene– divinylbenzene copolymers. React. Funct. Polym. 1999;41:21–25. doi: 10.1016/S1381-5148(99)00030-9. DOI
Pulko I., Wall J., Krajnc P., Cameron N.R. Ultra-high surface area functional porous polymers by emulsion templating and hypercrosslinking: Efficient nucleophilic catalyst supports. Chem. A Eur. J. 2010;16:2350–2354. doi: 10.1002/chem.200903043. PubMed DOI
Dušek K. Phase separation during the formation of three-dimensional polymers. J. Polym. Sci. Part B Polym. Lett. 1965;3:209–212. doi: 10.1002/pol.1965.110030311. DOI
Okay O. Macroporous copolymer networks. Prog. Polym. Sci. 2000;25:711–779. doi: 10.1016/S0079-6700(00)00015-0. DOI
Tsyurupa M.P., Davankov V.A. Porous structure of hypercrosslinked polystyrene: State-of-the-art mini-review. React. Funct. Polym. 2006;66:768–779. doi: 10.1016/j.reactfunctpolym.2005.11.004. DOI
Sherrington D.C. Preparation, structure and morphology of polymer supports. Chem. Commun. 1998:2275–2286. doi: 10.1039/a803757d. DOI
Sherrington D.C., Hodge P. Synthesis Separations Using Functional Polymers. Wiley-VCH Verlag GmbH&Co. KGaA; Chichester, UK: 1988.
Pastukhov A.V., Tsyurupa M.P., Davankov V.A. Hypercrosslinked polystyrene: A polymer in a non-classical physical state. J. Polym. Sci. Part B Polym. Phys. 1999;37:2324–2333. doi: 10.1002/(SICI)1099-0488(19990901)37:17<2324::AID-POLB4>3.0.CO;2-B. DOI
Davankov V.A., Tsyurupa M.P., Ilyin M., Pavlova L. Hypercross-linked polystyrene and its potentials for liquid chromatography: A mini-review. J. Chromatogr. A. 2002;965:65–73. doi: 10.1016/S0021-9673(01)01583-7. PubMed DOI
Davankov V.A., Sychov C.S., Ilyin M.M., Sochilina K.O. Hypercrosslinked polystyrene as a novel type of high-performance liquid chromatography column packing material: Mechanisms of retention. J. Chromatogr. A. 2003;987:67–75. doi: 10.1016/S0021-9673(02)01914-3. PubMed DOI
Penner N.A., Nesterenko P.N., Hyin M.M., Tsyurupa M.P., Davankov V.A. Investigation of the properties of hypercrosslinked polystyrene as a stationary phase for high-performance liquid chromatography. Chromatographia. 1999;50:611–620. doi: 10.1007/BF02493669. DOI
Urban J., Svec F., Fréchet J.M.J. Hypercrosslinking: New approach to porous polymer monolithic capillary columns with large surface area for the highly efficient separation of small molecules. J. Chromatogr. A. 2010;1217:8212–8221. doi: 10.1016/j.chroma.2010.10.100. PubMed DOI PMC
Yang Y., Tan B., Wood C.D. Solution-processable hypercrosslinked polymers by low cost strategies: A promising platform for gas storage and separation. J. Mater. Chem. A. 2016;4:15072–15080. doi: 10.1039/C6TA05226F. DOI
Liu Q., Xia B., Huang J., Liao B., Liu H., Ou B., Chen L., Zhou Z. Hypercrosslinked polystyrene microspheres with ultrahigh surface area and their application in gas storage. Mater. Chem. Phys. 2017;199:616–622. doi: 10.1016/j.matchemphys.2017.07.032. DOI
Belyakova L.D., Schevchenko T.I., Davankov V.A., Tsyurupa M.P. Sorption of vapors of various substances by hypercrosslinked “styrosorb” polystyrenes. Adv. Colloid Interface Sci. 1986;25:249–266. doi: 10.1016/0001-8686(86)80011-2. DOI
Tsyurupa M.P., Maslova L.A., Andreeva A.I., Mrachkovskaya T.A., Davankov V.A. Sorption of organic compounds from aqueous media by hypercrosslinked polystyrene sorbents ‘Styrosorbrs’. React. Polym. 1995;25:69–78. doi: 10.1016/0923-1137(95)00021-A. DOI
Davankov V.A., Pavlova L., Tsyurupa M.P., Brady J., Balsamo M., Yousha E. Polymeric adsorbent for removing toxic proteins from blood of patients with kidney failure. J. Chromatogr. B Biomed. Sci. Appl. 2000;739:73–80. doi: 10.1016/S0378-4347(99)00554-X. PubMed DOI
Wang K., Jia Z., Yang X., Wang L., Gu Y., Tan B. Acid and base coexisted heterogeneous catalysts supported on hypercrosslinked polymers for one-pot cascade reactions. J. Catal. 2017;348:168–176. doi: 10.1016/j.jcat.2017.02.024. DOI
Gu Y., Son S.U., Li T., Tan B. Low-Cost Hypercrosslinked Polymers by Direct Knitting Strategy for Catalytic Applications. Adv. Funct. Mater. 2021;31:1–24. doi: 10.1002/adfm.202008265. DOI
Liu X., Xu W., Xiang D., Zhang Z., Chen D., Hu Y., Li Y., Ouyang Y., Lin H. Palladium immobilized on functionalized hypercrosslinked polymers: A highly active and recyclable catalyst for Suzuki-Miyaura coupling reactions in water. New J. Chem. 2019;43:12206–12210. doi: 10.1039/C9NJ02444A. DOI
Barby D., Haq Z. Low Density Porous Cross-Linked Polymeric Material Sand Their Preparation. 60138. EP Patent. 1985 Nov 6;
Pulko I., Krajnc P. Porous Polymer Monoliths by Emulsion Templating. Encycl. Polym. Sci. Technol. 2017:1–28. doi: 10.1002/0471440264.pst653. DOI
Cameron N.R. High internal phase emulsion templating as a route to well-defined porous polymers. Polymer. 2005;46:1439–1449. doi: 10.1016/j.polymer.2004.11.097. DOI
Zhang T., Sanguramath R.A., Israel S., Silverstein M.S. Emulsion Templating: Porous Polymers and Beyond. Macromolecules. 2019;52:5445–5479. doi: 10.1021/acs.macromol.8b02576. DOI
Foudazi R., Qavi S., Masalova I., Malkin A.Y. Physical chemistry of highly concentrated emulsions. Adv. Colloid Interface Sci. 2015;220:78–91. doi: 10.1016/j.cis.2015.03.002. PubMed DOI
Naranda J., Sušec M., Maver U., Gradišnik L., Gorenjak M., Vukasović A., Ivković A., Rupnik M.S., Vogrin M., Krajnc P. Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration. Sci. Rep. 2016;6:1–11. doi: 10.1038/srep28695. PubMed DOI PMC
Paljevac M., Gradišnik L., Lipovšek S., Maver U., Kotek J., Krajnc P. Multiple-Level Porous Polymer Monoliths with Interconnected Cellular Topology Prepared by Combining Hard Sphere and Emulsion Templating for Use in Bone Tissue Engineering. Macromol. Biosci. 2018;18:1–8. doi: 10.1002/mabi.201700306. PubMed DOI
Busby W., Cameron N.R., Jahoda C.A.B. Emulsion-derived foams (PolyHIPEs) containing poly(Sε-caprolactone) as matrixes for tissue engineering. Biomacromolecules. 2001;2:154–164. doi: 10.1021/bm0000889. PubMed DOI
Owen R., Sherborne C.T., Green N.H., Reilly G.C., Claeyssens F. Emulsion templated scaffolds with tunable mechanical properties for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 2016;54:159–172. doi: 10.1016/j.jmbbm.2015.09.019. PubMed DOI PMC
Choudhury S., Fitzhenry L., White B., Connolly D. Polystyrene-co-divinylbenzene polyHIPE monoliths in 1.0 mm column formats for liquid chromatography. Materials. 2016;9:212. doi: 10.3390/ma9030212. PubMed DOI PMC
Kovačič S., Krajnc P. Macroporous monolithic poly(4-vinylbenzyl chloride) columns for organic synthesis facilitation by in situ polymerization of high internal phase emulsions. J. Polym. Sci. A Polym. Chem. 2009;47:6726–6734. doi: 10.1002/pola.23732. DOI
Huš S., Kolar M., Krajnc P. Separation of heavy metals from water by functionalized glycidyl methacrylate poly (high internal phase emulsions) J. Chromatogr. A. 2016;1437:168–175. doi: 10.1016/j.chroma.2016.02.012. PubMed DOI
Taylor-Pashow K.M.L., Pribyl J.G. PolyHIPEs for Separations and Chemical Transformations: A Review. Solvent Extr. Ion Exch. 2019;37:1–26. doi: 10.1080/07366299.2019.1592924. DOI
Krajnc P., Leber N., Štefanec D., Kontrec S., Podgornik A. Preparation and characterisation of poly(high internal phase emulsion) methacrylate monoliths and their application as separation media. J. Chromatogr. A. 2005;1065:69–73. doi: 10.1016/j.chroma.2004.10.051. PubMed DOI
Koler A., Paljevac M., Cmager N., Iskra J., Kolar M., Krajnc P. Poly(4-vinylpyridine) polyHIPEs as catalysts for cycloaddition click reaction. Polymer. 2017;126:402–407. doi: 10.1016/j.polymer.2017.04.051. DOI
Kawada K., Okano K., Iskra J., Krajnc P., Cahard D. SelectfluorTMon a PolyHIPE Material as Regenerative and Reusable Polymer-Supported Electrophilic Fluorinating Agent. Adv. Synth. Catal. 2017;359:584–589. doi: 10.1002/adsc.201601312. DOI
Sevšek U., Brus J., Jeřabek K., Krajnc P. Post polymerisation hypercrosslinking of styrene/divinylbenzene poly(HIPE)s: Creating micropores within macroporous polymer. Polymer. 2014;55:410–415. doi: 10.1016/j.polymer.2013.09.026. DOI
Schwab M.G., Senkovska I., Rose M., Klein N., Koch M., Pahnke J., Jonschker G., Schmitz B., Hirscher M., Kaskel S. High surface area polyHIPEs with hierarchical pore system. Soft Matter. 2009;5:1055–1059. doi: 10.1039/b815143a. DOI
Israel S., Gurevitch I., Silverstein M.S. Carbons with a hierarchical porous structure through the pyrolysis of hypercrosslinked emulsion-templated polymers. Polymer. 2015;72:453–463. doi: 10.1016/j.polymer.2015.02.055. DOI
Koler A., Pulko I., Krajnc P. Post polymerisation hypercrosslinking with emulsion templating for hierarchical and multi-level porous polymers. Acta Chim. Slov. 2020;67:349–360. doi: 10.17344/acsi.2020.5901. PubMed DOI
Lee J.Y., Wood C.D., Bradshaw D., Rosseinsky M.J., Cooper A.I. Hydrogen adsorption in microporous hypercrosslinked polymers. Chem. Commun. 2006:2670–2672. doi: 10.1039/b604625h. PubMed DOI
Macintyre F.S., Sherrington D.C., Tetley L. Synthesis of ultrahigh surface area monodisperse porous polymer nanospheres. Macromolecules. 2006;39:5381–5384. doi: 10.1021/ma0610010. DOI
Rouquerol J., Avnir D., Fairbridge D.H., Everett C.W., Haynes J.M., Pernicone N., Ramsay J.D.F., Sing K.S.W., Unger K.K. Recommendations for the characterization of porous solids. Pure Appl. Chem. 1994;66:1739–1758. doi: 10.1351/pac199466081739. DOI
Harkins W.D., Jura G. Surfaces of Solids. XI. Determination of Decrease (pi) of Free Surface Energy of a Solid by Adsorbed Film. J. Am. Chem. Soc. 1944;66:1356–1362.
Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. Academic Press; New York, NY, USA: 1982. DOI