Influence of Functional Group Concentration on Hypercrosslinking of Poly(vinylbenzyl chloride) PolyHIPEs: Upgrading Macroporosity with Nanoporosity

. 2021 Aug 14 ; 13 (16) : . [epub] 20210814

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34451260

Grantová podpora
P2 006 Javna Agencija za Raziskovalno Dejavnost RS

With the aim to study the influence of monomer ratio in poly(high internal phase emulsions) (polyHIPEs) on the polymer network architecture and morphology of poly(vinylbenzyl chloride-co-divinylbenzene-co-styrene) after hypercrosslinking via the internal Friedel-Crafts process, polyHIPEs with 80% overall porosity were prepared at three different initial crosslinking degrees, namely 2, 5, and 10 mol.%. All had typical interconnected cellular morphology, which was not affected by the hypercrosslinking process. Nitrogen adsorption and desorption experiments with BET and t-plot modelling were used for the evaluation of the newly introduced nanoporosity and in combination with elemental analysis for the evaluation of the extent of the hypercrosslinking. It was found that, for all three initial crosslinking degrees, the minimum amount of functional monomer, 4-vinylbenzyl chloride, was approximately 30 mol.%. Hypercrosslinking of polymers with lower concentrations of functional monomer did not result in induction of nanoporosity while the initial crosslinking degree had a much lower impact on the formation of nanoporosity.

Zobrazit více v PubMed

Davankov V.A., Rogozhin V., Tsyurupa M.P. Macronet Polystyrene Structures for Ionites and Method of Producing Same. 3,729,457. U.S. Patent. 1973 Apr 24;

Tsyurupa M.P., Davankov V.A. Hypercrosslinked polymers: Basic principle of preparing the new class of polymeric materials. React. Funct. Polym. 2002;53:193–203. doi: 10.1016/S1381-5148(02)00173-6. DOI

Veverka P., Jeřábek K. Influence of hypercrosslinking on adsorption and absorption on or in styrenic polymers. React. Funct. Polym. 2004;59:71–79. doi: 10.1016/j.reactfunctpolym.2003.12.008. DOI

Ahn J.H., Jang J.E., Oh C.G., Ihm S.K., Cortez J., Sherrington D.C. Rapid generation and control of microporosity, bimodal pore size distribution, and surface area in Davankov-type hyper-cross-linked resins. Macromolecules. 2006;39:627–632. doi: 10.1021/ma051152n. DOI

Veverka P., Jeřábek K. Mechanism of hypercrosslinking of chloromethylated styrene– divinylbenzene copolymers. React. Funct. Polym. 1999;41:21–25. doi: 10.1016/S1381-5148(99)00030-9. DOI

Pulko I., Wall J., Krajnc P., Cameron N.R. Ultra-high surface area functional porous polymers by emulsion templating and hypercrosslinking: Efficient nucleophilic catalyst supports. Chem. A Eur. J. 2010;16:2350–2354. doi: 10.1002/chem.200903043. PubMed DOI

Dušek K. Phase separation during the formation of three-dimensional polymers. J. Polym. Sci. Part B Polym. Lett. 1965;3:209–212. doi: 10.1002/pol.1965.110030311. DOI

Okay O. Macroporous copolymer networks. Prog. Polym. Sci. 2000;25:711–779. doi: 10.1016/S0079-6700(00)00015-0. DOI

Tsyurupa M.P., Davankov V.A. Porous structure of hypercrosslinked polystyrene: State-of-the-art mini-review. React. Funct. Polym. 2006;66:768–779. doi: 10.1016/j.reactfunctpolym.2005.11.004. DOI

Sherrington D.C. Preparation, structure and morphology of polymer supports. Chem. Commun. 1998:2275–2286. doi: 10.1039/a803757d. DOI

Sherrington D.C., Hodge P. Synthesis Separations Using Functional Polymers. Wiley-VCH Verlag GmbH&Co. KGaA; Chichester, UK: 1988.

Pastukhov A.V., Tsyurupa M.P., Davankov V.A. Hypercrosslinked polystyrene: A polymer in a non-classical physical state. J. Polym. Sci. Part B Polym. Phys. 1999;37:2324–2333. doi: 10.1002/(SICI)1099-0488(19990901)37:17<2324::AID-POLB4>3.0.CO;2-B. DOI

Davankov V.A., Tsyurupa M.P., Ilyin M., Pavlova L. Hypercross-linked polystyrene and its potentials for liquid chromatography: A mini-review. J. Chromatogr. A. 2002;965:65–73. doi: 10.1016/S0021-9673(01)01583-7. PubMed DOI

Davankov V.A., Sychov C.S., Ilyin M.M., Sochilina K.O. Hypercrosslinked polystyrene as a novel type of high-performance liquid chromatography column packing material: Mechanisms of retention. J. Chromatogr. A. 2003;987:67–75. doi: 10.1016/S0021-9673(02)01914-3. PubMed DOI

Penner N.A., Nesterenko P.N., Hyin M.M., Tsyurupa M.P., Davankov V.A. Investigation of the properties of hypercrosslinked polystyrene as a stationary phase for high-performance liquid chromatography. Chromatographia. 1999;50:611–620. doi: 10.1007/BF02493669. DOI

Urban J., Svec F., Fréchet J.M.J. Hypercrosslinking: New approach to porous polymer monolithic capillary columns with large surface area for the highly efficient separation of small molecules. J. Chromatogr. A. 2010;1217:8212–8221. doi: 10.1016/j.chroma.2010.10.100. PubMed DOI PMC

Yang Y., Tan B., Wood C.D. Solution-processable hypercrosslinked polymers by low cost strategies: A promising platform for gas storage and separation. J. Mater. Chem. A. 2016;4:15072–15080. doi: 10.1039/C6TA05226F. DOI

Liu Q., Xia B., Huang J., Liao B., Liu H., Ou B., Chen L., Zhou Z. Hypercrosslinked polystyrene microspheres with ultrahigh surface area and their application in gas storage. Mater. Chem. Phys. 2017;199:616–622. doi: 10.1016/j.matchemphys.2017.07.032. DOI

Belyakova L.D., Schevchenko T.I., Davankov V.A., Tsyurupa M.P. Sorption of vapors of various substances by hypercrosslinked “styrosorb” polystyrenes. Adv. Colloid Interface Sci. 1986;25:249–266. doi: 10.1016/0001-8686(86)80011-2. DOI

Tsyurupa M.P., Maslova L.A., Andreeva A.I., Mrachkovskaya T.A., Davankov V.A. Sorption of organic compounds from aqueous media by hypercrosslinked polystyrene sorbents ‘Styrosorbrs’. React. Polym. 1995;25:69–78. doi: 10.1016/0923-1137(95)00021-A. DOI

Davankov V.A., Pavlova L., Tsyurupa M.P., Brady J., Balsamo M., Yousha E. Polymeric adsorbent for removing toxic proteins from blood of patients with kidney failure. J. Chromatogr. B Biomed. Sci. Appl. 2000;739:73–80. doi: 10.1016/S0378-4347(99)00554-X. PubMed DOI

Wang K., Jia Z., Yang X., Wang L., Gu Y., Tan B. Acid and base coexisted heterogeneous catalysts supported on hypercrosslinked polymers for one-pot cascade reactions. J. Catal. 2017;348:168–176. doi: 10.1016/j.jcat.2017.02.024. DOI

Gu Y., Son S.U., Li T., Tan B. Low-Cost Hypercrosslinked Polymers by Direct Knitting Strategy for Catalytic Applications. Adv. Funct. Mater. 2021;31:1–24. doi: 10.1002/adfm.202008265. DOI

Liu X., Xu W., Xiang D., Zhang Z., Chen D., Hu Y., Li Y., Ouyang Y., Lin H. Palladium immobilized on functionalized hypercrosslinked polymers: A highly active and recyclable catalyst for Suzuki-Miyaura coupling reactions in water. New J. Chem. 2019;43:12206–12210. doi: 10.1039/C9NJ02444A. DOI

Barby D., Haq Z. Low Density Porous Cross-Linked Polymeric Material Sand Their Preparation. 60138. EP Patent. 1985 Nov 6;

Pulko I., Krajnc P. Porous Polymer Monoliths by Emulsion Templating. Encycl. Polym. Sci. Technol. 2017:1–28. doi: 10.1002/0471440264.pst653. DOI

Cameron N.R. High internal phase emulsion templating as a route to well-defined porous polymers. Polymer. 2005;46:1439–1449. doi: 10.1016/j.polymer.2004.11.097. DOI

Zhang T., Sanguramath R.A., Israel S., Silverstein M.S. Emulsion Templating: Porous Polymers and Beyond. Macromolecules. 2019;52:5445–5479. doi: 10.1021/acs.macromol.8b02576. DOI

Foudazi R., Qavi S., Masalova I., Malkin A.Y. Physical chemistry of highly concentrated emulsions. Adv. Colloid Interface Sci. 2015;220:78–91. doi: 10.1016/j.cis.2015.03.002. PubMed DOI

Naranda J., Sušec M., Maver U., Gradišnik L., Gorenjak M., Vukasović A., Ivković A., Rupnik M.S., Vogrin M., Krajnc P. Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration. Sci. Rep. 2016;6:1–11. doi: 10.1038/srep28695. PubMed DOI PMC

Paljevac M., Gradišnik L., Lipovšek S., Maver U., Kotek J., Krajnc P. Multiple-Level Porous Polymer Monoliths with Interconnected Cellular Topology Prepared by Combining Hard Sphere and Emulsion Templating for Use in Bone Tissue Engineering. Macromol. Biosci. 2018;18:1–8. doi: 10.1002/mabi.201700306. PubMed DOI

Busby W., Cameron N.R., Jahoda C.A.B. Emulsion-derived foams (PolyHIPEs) containing poly(Sε-caprolactone) as matrixes for tissue engineering. Biomacromolecules. 2001;2:154–164. doi: 10.1021/bm0000889. PubMed DOI

Owen R., Sherborne C.T., Green N.H., Reilly G.C., Claeyssens F. Emulsion templated scaffolds with tunable mechanical properties for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 2016;54:159–172. doi: 10.1016/j.jmbbm.2015.09.019. PubMed DOI PMC

Choudhury S., Fitzhenry L., White B., Connolly D. Polystyrene-co-divinylbenzene polyHIPE monoliths in 1.0 mm column formats for liquid chromatography. Materials. 2016;9:212. doi: 10.3390/ma9030212. PubMed DOI PMC

Kovačič S., Krajnc P. Macroporous monolithic poly(4-vinylbenzyl chloride) columns for organic synthesis facilitation by in situ polymerization of high internal phase emulsions. J. Polym. Sci. A Polym. Chem. 2009;47:6726–6734. doi: 10.1002/pola.23732. DOI

Huš S., Kolar M., Krajnc P. Separation of heavy metals from water by functionalized glycidyl methacrylate poly (high internal phase emulsions) J. Chromatogr. A. 2016;1437:168–175. doi: 10.1016/j.chroma.2016.02.012. PubMed DOI

Taylor-Pashow K.M.L., Pribyl J.G. PolyHIPEs for Separations and Chemical Transformations: A Review. Solvent Extr. Ion Exch. 2019;37:1–26. doi: 10.1080/07366299.2019.1592924. DOI

Krajnc P., Leber N., Štefanec D., Kontrec S., Podgornik A. Preparation and characterisation of poly(high internal phase emulsion) methacrylate monoliths and their application as separation media. J. Chromatogr. A. 2005;1065:69–73. doi: 10.1016/j.chroma.2004.10.051. PubMed DOI

Koler A., Paljevac M., Cmager N., Iskra J., Kolar M., Krajnc P. Poly(4-vinylpyridine) polyHIPEs as catalysts for cycloaddition click reaction. Polymer. 2017;126:402–407. doi: 10.1016/j.polymer.2017.04.051. DOI

Kawada K., Okano K., Iskra J., Krajnc P., Cahard D. SelectfluorTMon a PolyHIPE Material as Regenerative and Reusable Polymer-Supported Electrophilic Fluorinating Agent. Adv. Synth. Catal. 2017;359:584–589. doi: 10.1002/adsc.201601312. DOI

Sevšek U., Brus J., Jeřabek K., Krajnc P. Post polymerisation hypercrosslinking of styrene/divinylbenzene poly(HIPE)s: Creating micropores within macroporous polymer. Polymer. 2014;55:410–415. doi: 10.1016/j.polymer.2013.09.026. DOI

Schwab M.G., Senkovska I., Rose M., Klein N., Koch M., Pahnke J., Jonschker G., Schmitz B., Hirscher M., Kaskel S. High surface area polyHIPEs with hierarchical pore system. Soft Matter. 2009;5:1055–1059. doi: 10.1039/b815143a. DOI

Israel S., Gurevitch I., Silverstein M.S. Carbons with a hierarchical porous structure through the pyrolysis of hypercrosslinked emulsion-templated polymers. Polymer. 2015;72:453–463. doi: 10.1016/j.polymer.2015.02.055. DOI

Koler A., Pulko I., Krajnc P. Post polymerisation hypercrosslinking with emulsion templating for hierarchical and multi-level porous polymers. Acta Chim. Slov. 2020;67:349–360. doi: 10.17344/acsi.2020.5901. PubMed DOI

Lee J.Y., Wood C.D., Bradshaw D., Rosseinsky M.J., Cooper A.I. Hydrogen adsorption in microporous hypercrosslinked polymers. Chem. Commun. 2006:2670–2672. doi: 10.1039/b604625h. PubMed DOI

Macintyre F.S., Sherrington D.C., Tetley L. Synthesis of ultrahigh surface area monodisperse porous polymer nanospheres. Macromolecules. 2006;39:5381–5384. doi: 10.1021/ma0610010. DOI

Rouquerol J., Avnir D., Fairbridge D.H., Everett C.W., Haynes J.M., Pernicone N., Ramsay J.D.F., Sing K.S.W., Unger K.K. Recommendations for the characterization of porous solids. Pure Appl. Chem. 1994;66:1739–1758. doi: 10.1351/pac199466081739. DOI

Harkins W.D., Jura G. Surfaces of Solids. XI. Determination of Decrease (pi) of Free Surface Energy of a Solid by Adsorbed Film. J. Am. Chem. Soc. 1944;66:1356–1362.

Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. Academic Press; New York, NY, USA: 1982. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

RAFT Polymerisation and Hypercrosslinking Improve Crosslink Homogeneity and Surface Area of Styrene Based PolyHIPEs

. 2023 May 10 ; 15 (10) : . [epub] 20230510

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...