RAFT Polymerisation and Hypercrosslinking Improve Crosslink Homogeneity and Surface Area of Styrene Based PolyHIPEs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P2 0006
Slovenian Research Agency
PubMed
37242829
PubMed Central
PMC10222607
DOI
10.3390/polym15102255
PII: polym15102255
Knihovny.cz E-zdroje
- Klíčová slova
- RAFT polymerisation, hypercrosslinking, polyHIPEs, porosity, porous polymers,
- Publikační typ
- časopisecké články MeSH
The influence of a polymerisation mechanism (reversible addition-fragmentation chain transfer; RAFT vs. free radical polymerisation; FRP) on the porous structure of highly porous poly(styrene-co-divinylbenzene) polymers was investigated. The highly porous polymers were synthesised via high internal phase emulsion templating (polymerizing the continuous phase of a high internal phase emulsion), utilising either FRP or RAFT processes. Furthermore, residual vinyl groups in the polymer chains were used for the subsequent crosslinking (hypercrosslinking) applying di-tert-butyl peroxide as the source of radicals. A significant difference in the specific surface area of polymers prepared by FRP (between 20 and 35 m2/g) and samples prepared by RAFT polymerisation (between 60 and 150 m2/g) was found. Based on the results from gas adsorption and solid state NMR, it could be concluded that the RAFT polymerisation affects the homogeneous distribution of the crosslinks in the highly crosslinked styrene-co-divinylbenzene polymer network. During the initial crosslinking, RAFT polymerisation leads to the increase in mesopores with diameters between 2 and 20 nm, resulting in good accessibility of polymer chains during the hypercrosslinking reaction, which is reflected in increased microporosity. The fraction of micropores created during the hypercrosslinking of polymers prepared via RAFT is around 10% of the total pore volume, which is up to 10 times more than for polymers prepared by FRP. Specific surface area, mesopore surface area, and total pore volume after hypercrosslinking reach almost the same values, regardless of the initial crosslinking. The degree of hypercrosslinking was confirmed by determination of the remaining double bonds by solid-state NMR analysis.
Zobrazit více v PubMed
Wu D., Xu F., Sun B., Fu R., He H., Matyjaszewski K. Design and preparation of porous polymers. Chem. Rev. 2012;112:3959–4015. doi: 10.1021/cr200440z. PubMed DOI
Pulko I., Krajnc P. High Internal Phase Emulsion Templating-A Path to Hierarchically Porous Functional Polymers. Macromol. Rapid Commun. 2012;33:1731–1746. doi: 10.1002/marc.201200393. PubMed DOI
Cameron N.R., Sherrington D.C. High Internal Phase Emulsions (HIPEs)—Structure, Properties and Use in Polymer Preparation. Adv. Polym. Sci. 1996;126:163–214. doi: 10.1007/3-540-60484-7_4. DOI
Zhang T., Sanguramath R.A., Israel S., Silverstein M.S. Emulsion Templating: Porous Polymers and Beyond. Macromolecules. 2019;52:5445–5479. doi: 10.1021/acs.macromol.8b02576. DOI
Kramer S., Cameron N.R., Krajnc P. Porous Polymers from High Internal Phase Emulsions as Scaffolds for Biological Applications. Polymers. 2021;13:1786. doi: 10.3390/polym13111786. PubMed DOI PMC
Torquato S., Truskett T.M., Debenedetti P.G. Is random close packing of spheres well defined? Phys. Rev. Lett. 2000;84:2064–2067. doi: 10.1103/PhysRevLett.84.2064. PubMed DOI
Davankov V.A., Tsyurupa M.P. Structure and properties of hypercrosslinked polystyrene—The first representative of a new class of polymer networks. React. Polym. 1990;13:27–42. doi: 10.1016/0923-1137(90)90038-6. DOI
Tsyurupa M.P., Davankov V.A. Hypercrosslinked polymers: Basic principle of preparing the new class of polymeric materials. React. Funct. Polym. 2002;53:193–203. doi: 10.1016/S1381-5148(02)00173-6. DOI
Koler A., Pulko I., Krajnc P. Post Polymerisation Hypercrosslinking with Emulsion Templating for Hierarchical and Multi-Level Porous Polymers. Acta Chim. Slov. 2020;67:349–360. doi: 10.17344/acsi.2020.5901. PubMed DOI
Pulko I., Wall J., Krajnc P., Cameron N.R. Ultra-high surface area functional porous polymers by emulsion templating and hypercrosslinking: Efficient nucleophilic catalyst supports. Chem. A Eur. J. 2010;16:2350–2354. doi: 10.1002/chem.200903043. PubMed DOI
Ahn J.H., Jang J.E., Oh C.G., Ihm S.K., Cortez J., Sherrington D.C. Rapid generation and control of microporosity, bimodal pore size distribution, and surface area in Davankov-type hyper-cross-linked resins. Macromolecules. 2006;39:627–632. doi: 10.1021/ma051152n. DOI
Mezhoud S., Paljevac M., Koler A., Le Droumaguet B., Grande D., Krajnc P. Novel hypercrosslinking approach toward high surface area functional 2-hydroxyethyl methacrylate-based polyHIPEs. React. Funct. Polym. 2018;132:51–59. doi: 10.1016/j.reactfunctpolym.2018.09.009. DOI
Koler A., Kolar M., Jeřábek K., Krajnc P. Influence of Functional Group Concentration on Hypercrosslinking of Poly (vinylbenzyl chloride) PolyHIPEs: Upgrading Macroporosity with Nanoporosity. Polymers. 2021;13:2721. doi: 10.3390/polym13162721. PubMed DOI PMC
Pastukhov A.V., Tsyurupa M.P., Davankov V.A. Hypercrosslinked polystyrene: A polymer in a non-classical physical state. J. Polym. Sci. Part B Polym. Phys. 1999;37:2324–2333. doi: 10.1002/(SICI)1099-0488(19990901)37:17<2324::AID-POLB4>3.0.CO;2-B. DOI
Veverka P., Jerabek K. Mechanism of hypercrosslinking of chloromethylated styrene–divinylbenzene copolymers. React. Funct. Polym. 1999;41:21–25. doi: 10.1016/S1381-5148(99)00030-9. DOI
Moad G., Rizzardo E., Thang S.H. Radical addition-fragmentation chemistry in polymer synthesis. Polymer. 2008;49:1079–1131. doi: 10.1016/j.polymer.2007.11.020. DOI
Corrigan N., Boyer C. In the Limelight: 2D and 3D Materials via Photo-Controlled Radical Polymerization. Trends Chem. 2020;2:689–706. doi: 10.1016/j.trechm.2020.05.001. DOI
Cuthbert J., Wanasinghe S.V., Matyjaszewski K., Konkolewicz D. Are RAFT and ATRP Universally Interchangeable Polymerization Methods in Network Formation? Macromolecules. 2021;54:8331–8340. doi: 10.1021/acs.macromol.1c01587. DOI
Wanasinghe S.V., Sun M., Yehl K., Cuthbert J., Matyjaszewski K., Konkolewicz D. PET-RAFT Increases Uniformity in Polymer Networks. ACS Macro Lett. 2022;11:1156–1161. doi: 10.1021/acsmacrolett.2c00448. PubMed DOI
Luo Y., Wang A.N., Gao X. One-pot interfacial polymerization to prepare PolyHIPEs with functional surface. Colloid Polym. Sci. 2015;293:1767–1779. doi: 10.1007/s00396-015-3567-y. DOI
Khodabandeh A., Dario Arrua R., Desire C.T., Rodemann T., Bon S.A.F., Thickett S.C., Hilder E.F. Preparation of inverse polymerized high internal phase emulsions using an amphiphilic macro-RAFT agent as sole stabilizer. Polym. Chem. 2016;7:1803–1812. doi: 10.1039/C5PY02012C. DOI
Khodabandeh A., Dario Arrua R., Mansour F.R., Thickett S.C., Hilder E.F. PEO-based brush-type amphiphilic macro-RAFT agents and their assembled polyHIPE monolithic structures for applications in separation science. Sci. Rep. 2017;7:7847. doi: 10.1038/s41598-017-08423-x. PubMed DOI PMC
Audouin F., Heise A. Surface-initiated RAFT polymerization of NIPAM from monolithic macroporous polyHIPE. Eur. Polym. J. 2013;49:1073–1079. doi: 10.1016/j.eurpolymj.2013.01.013. DOI
Koler A., Krajnc P. Surface Modification of Hypercrosslinked Vinylbenzyl Chloride PolyHIPEs by Grafting via RAFT. Macromol. Chem. Phys. 2021;222:2000381. doi: 10.1002/macp.202000381. DOI
Luo Y., Wang A.N., Gao X. Pushing the mechanical strength of PolyHIPEs up to the theoretical limit through living radical polymerization. Soft Matter. 2012;8:1824–1830. doi: 10.1039/C1SM06756G. DOI
Benaddi A.O., Cohen O., Matyjaszewski K., Silverstein M.S. RAFT polymerization within high internal phase emulsions: Porous structures, mechanical behaviors, and uptakes. Polymer. 2021;213:123327. doi: 10.1016/j.polymer.2020.123327. DOI
Anderson K.L., Nazarov W., Musgrave C.S.A., Bazin N., Faith D. Synthesis and characterisation of low density porous polymers by reversible addition-fragmentation chain transfer (RAFT) J. Radioanal. Nucl. Chem. 2014;299:969–975. doi: 10.1007/s10967-013-2632-6. DOI
Moad G. RAFT (Reversible addition-fragmentation chain transfer) crosslinking (co)polymerization of multi-olefinic monomers to form polymer networks. Polym. Int. 2015;64:15–24. doi: 10.1002/pi.4767. DOI
Carnachan R.J., Bokhari M., Przyborski S.A., Cameron N.R. Tailoring the morphology of emulsion-templated porous polymers. Soft Matter. 2006;2:608–616. doi: 10.1039/b603211g. PubMed DOI
Langer B., Schnell I., Spiess H.W., Grimmer A.-R. Temperature Calibration under Ultrafast MAS Conditions. J. Magn. Reson. 1999;138:182–186. doi: 10.1006/jmre.1999.1717. PubMed DOI
Brus J. Heating of samples induced by fast magic-angle spinning. Solid State Nucl. Magn. Reson. 2000;16:151–160. doi: 10.1016/S0926-2040(00)00061-8. PubMed DOI
Soukupová K., Sassi A., Jeřábek K. Reinforcing of expanded polymer morphology using peroxy radical initiator. React. Funct. Polym. 2009;69:353–357. doi: 10.1016/j.reactfunctpolym.2009.02.008. DOI
Roa-Luna M., Jaramillo-Soto G., Castañeda-Flores P.V., Vivaldo-Lima E. Copolymerization kinetics of styrene and divinylbenzene in the presence of S-thiobenzoyl thioglycolic acid as RAFT agent. Chem. Eng. Technol. 2010;33:1893–1899. doi: 10.1002/ceat.201000257. DOI
Luo Y., Wang X., Li B.G., Zhu S. Toward well-controlled ab initio RAFT emulsion polymerization of styrene mediated by 2-(((Dodecylsulfanyl)carbonothioyl)sulfanyl)propanoic acid. Macromolecules. 2011;44:221–229. doi: 10.1021/ma102378w. DOI
Wan W.M., Pan C.Y. One-pot synthesis of polymeric nanomaterials via RAFT dispersion polymerization induced self-assembly and re-organization. Polym. Chem. 2010;1:1475–1484. doi: 10.1039/c0py00124d. DOI
Law R.V., Sherrington D.C., Snape C.E. Quantitative solid state 13C NMR studies of highly cross-linked poly(divinylbenzene) resins. Macromolecules. 1997;30:2868–2875. doi: 10.1021/ma9616470. DOI
Sevšek U., Brus J., Jeřabek K., Krajnc P. Post polymerisation hypercrosslinking of styrene/divinylbenzene poly(HIPE)s: Creating micropores within macroporous polymer. Polymer. 2014;55:410–415. doi: 10.1016/j.polymer.2013.09.026. DOI
Rouquerol J., Avnir D., Fairbridge C.W., Everett D.H., Haynes J.M., Pernicone N., Ramsay J.D.F., Sing K.S.W., Unger K.K. Recommendations for the characterization of porous solids. Pure Appl. Chem. 1994;66:1739–1758. doi: 10.1351/pac199466081739. DOI