RAFT Polymerisation and Hypercrosslinking Improve Crosslink Homogeneity and Surface Area of Styrene Based PolyHIPEs

. 2023 May 10 ; 15 (10) : . [epub] 20230510

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37242829

Grantová podpora
P2 0006 Slovenian Research Agency

The influence of a polymerisation mechanism (reversible addition-fragmentation chain transfer; RAFT vs. free radical polymerisation; FRP) on the porous structure of highly porous poly(styrene-co-divinylbenzene) polymers was investigated. The highly porous polymers were synthesised via high internal phase emulsion templating (polymerizing the continuous phase of a high internal phase emulsion), utilising either FRP or RAFT processes. Furthermore, residual vinyl groups in the polymer chains were used for the subsequent crosslinking (hypercrosslinking) applying di-tert-butyl peroxide as the source of radicals. A significant difference in the specific surface area of polymers prepared by FRP (between 20 and 35 m2/g) and samples prepared by RAFT polymerisation (between 60 and 150 m2/g) was found. Based on the results from gas adsorption and solid state NMR, it could be concluded that the RAFT polymerisation affects the homogeneous distribution of the crosslinks in the highly crosslinked styrene-co-divinylbenzene polymer network. During the initial crosslinking, RAFT polymerisation leads to the increase in mesopores with diameters between 2 and 20 nm, resulting in good accessibility of polymer chains during the hypercrosslinking reaction, which is reflected in increased microporosity. The fraction of micropores created during the hypercrosslinking of polymers prepared via RAFT is around 10% of the total pore volume, which is up to 10 times more than for polymers prepared by FRP. Specific surface area, mesopore surface area, and total pore volume after hypercrosslinking reach almost the same values, regardless of the initial crosslinking. The degree of hypercrosslinking was confirmed by determination of the remaining double bonds by solid-state NMR analysis.

Zobrazit více v PubMed

Wu D., Xu F., Sun B., Fu R., He H., Matyjaszewski K. Design and preparation of porous polymers. Chem. Rev. 2012;112:3959–4015. doi: 10.1021/cr200440z. PubMed DOI

Pulko I., Krajnc P. High Internal Phase Emulsion Templating-A Path to Hierarchically Porous Functional Polymers. Macromol. Rapid Commun. 2012;33:1731–1746. doi: 10.1002/marc.201200393. PubMed DOI

Cameron N.R., Sherrington D.C. High Internal Phase Emulsions (HIPEs)—Structure, Properties and Use in Polymer Preparation. Adv. Polym. Sci. 1996;126:163–214. doi: 10.1007/3-540-60484-7_4. DOI

Zhang T., Sanguramath R.A., Israel S., Silverstein M.S. Emulsion Templating: Porous Polymers and Beyond. Macromolecules. 2019;52:5445–5479. doi: 10.1021/acs.macromol.8b02576. DOI

Kramer S., Cameron N.R., Krajnc P. Porous Polymers from High Internal Phase Emulsions as Scaffolds for Biological Applications. Polymers. 2021;13:1786. doi: 10.3390/polym13111786. PubMed DOI PMC

Torquato S., Truskett T.M., Debenedetti P.G. Is random close packing of spheres well defined? Phys. Rev. Lett. 2000;84:2064–2067. doi: 10.1103/PhysRevLett.84.2064. PubMed DOI

Davankov V.A., Tsyurupa M.P. Structure and properties of hypercrosslinked polystyrene—The first representative of a new class of polymer networks. React. Polym. 1990;13:27–42. doi: 10.1016/0923-1137(90)90038-6. DOI

Tsyurupa M.P., Davankov V.A. Hypercrosslinked polymers: Basic principle of preparing the new class of polymeric materials. React. Funct. Polym. 2002;53:193–203. doi: 10.1016/S1381-5148(02)00173-6. DOI

Koler A., Pulko I., Krajnc P. Post Polymerisation Hypercrosslinking with Emulsion Templating for Hierarchical and Multi-Level Porous Polymers. Acta Chim. Slov. 2020;67:349–360. doi: 10.17344/acsi.2020.5901. PubMed DOI

Pulko I., Wall J., Krajnc P., Cameron N.R. Ultra-high surface area functional porous polymers by emulsion templating and hypercrosslinking: Efficient nucleophilic catalyst supports. Chem. A Eur. J. 2010;16:2350–2354. doi: 10.1002/chem.200903043. PubMed DOI

Ahn J.H., Jang J.E., Oh C.G., Ihm S.K., Cortez J., Sherrington D.C. Rapid generation and control of microporosity, bimodal pore size distribution, and surface area in Davankov-type hyper-cross-linked resins. Macromolecules. 2006;39:627–632. doi: 10.1021/ma051152n. DOI

Mezhoud S., Paljevac M., Koler A., Le Droumaguet B., Grande D., Krajnc P. Novel hypercrosslinking approach toward high surface area functional 2-hydroxyethyl methacrylate-based polyHIPEs. React. Funct. Polym. 2018;132:51–59. doi: 10.1016/j.reactfunctpolym.2018.09.009. DOI

Koler A., Kolar M., Jeřábek K., Krajnc P. Influence of Functional Group Concentration on Hypercrosslinking of Poly (vinylbenzyl chloride) PolyHIPEs: Upgrading Macroporosity with Nanoporosity. Polymers. 2021;13:2721. doi: 10.3390/polym13162721. PubMed DOI PMC

Pastukhov A.V., Tsyurupa M.P., Davankov V.A. Hypercrosslinked polystyrene: A polymer in a non-classical physical state. J. Polym. Sci. Part B Polym. Phys. 1999;37:2324–2333. doi: 10.1002/(SICI)1099-0488(19990901)37:17<2324::AID-POLB4>3.0.CO;2-B. DOI

Veverka P., Jerabek K. Mechanism of hypercrosslinking of chloromethylated styrene–divinylbenzene copolymers. React. Funct. Polym. 1999;41:21–25. doi: 10.1016/S1381-5148(99)00030-9. DOI

Moad G., Rizzardo E., Thang S.H. Radical addition-fragmentation chemistry in polymer synthesis. Polymer. 2008;49:1079–1131. doi: 10.1016/j.polymer.2007.11.020. DOI

Corrigan N., Boyer C. In the Limelight: 2D and 3D Materials via Photo-Controlled Radical Polymerization. Trends Chem. 2020;2:689–706. doi: 10.1016/j.trechm.2020.05.001. DOI

Cuthbert J., Wanasinghe S.V., Matyjaszewski K., Konkolewicz D. Are RAFT and ATRP Universally Interchangeable Polymerization Methods in Network Formation? Macromolecules. 2021;54:8331–8340. doi: 10.1021/acs.macromol.1c01587. DOI

Wanasinghe S.V., Sun M., Yehl K., Cuthbert J., Matyjaszewski K., Konkolewicz D. PET-RAFT Increases Uniformity in Polymer Networks. ACS Macro Lett. 2022;11:1156–1161. doi: 10.1021/acsmacrolett.2c00448. PubMed DOI

Luo Y., Wang A.N., Gao X. One-pot interfacial polymerization to prepare PolyHIPEs with functional surface. Colloid Polym. Sci. 2015;293:1767–1779. doi: 10.1007/s00396-015-3567-y. DOI

Khodabandeh A., Dario Arrua R., Desire C.T., Rodemann T., Bon S.A.F., Thickett S.C., Hilder E.F. Preparation of inverse polymerized high internal phase emulsions using an amphiphilic macro-RAFT agent as sole stabilizer. Polym. Chem. 2016;7:1803–1812. doi: 10.1039/C5PY02012C. DOI

Khodabandeh A., Dario Arrua R., Mansour F.R., Thickett S.C., Hilder E.F. PEO-based brush-type amphiphilic macro-RAFT agents and their assembled polyHIPE monolithic structures for applications in separation science. Sci. Rep. 2017;7:7847. doi: 10.1038/s41598-017-08423-x. PubMed DOI PMC

Audouin F., Heise A. Surface-initiated RAFT polymerization of NIPAM from monolithic macroporous polyHIPE. Eur. Polym. J. 2013;49:1073–1079. doi: 10.1016/j.eurpolymj.2013.01.013. DOI

Koler A., Krajnc P. Surface Modification of Hypercrosslinked Vinylbenzyl Chloride PolyHIPEs by Grafting via RAFT. Macromol. Chem. Phys. 2021;222:2000381. doi: 10.1002/macp.202000381. DOI

Luo Y., Wang A.N., Gao X. Pushing the mechanical strength of PolyHIPEs up to the theoretical limit through living radical polymerization. Soft Matter. 2012;8:1824–1830. doi: 10.1039/C1SM06756G. DOI

Benaddi A.O., Cohen O., Matyjaszewski K., Silverstein M.S. RAFT polymerization within high internal phase emulsions: Porous structures, mechanical behaviors, and uptakes. Polymer. 2021;213:123327. doi: 10.1016/j.polymer.2020.123327. DOI

Anderson K.L., Nazarov W., Musgrave C.S.A., Bazin N., Faith D. Synthesis and characterisation of low density porous polymers by reversible addition-fragmentation chain transfer (RAFT) J. Radioanal. Nucl. Chem. 2014;299:969–975. doi: 10.1007/s10967-013-2632-6. DOI

Moad G. RAFT (Reversible addition-fragmentation chain transfer) crosslinking (co)polymerization of multi-olefinic monomers to form polymer networks. Polym. Int. 2015;64:15–24. doi: 10.1002/pi.4767. DOI

Carnachan R.J., Bokhari M., Przyborski S.A., Cameron N.R. Tailoring the morphology of emulsion-templated porous polymers. Soft Matter. 2006;2:608–616. doi: 10.1039/b603211g. PubMed DOI

Langer B., Schnell I., Spiess H.W., Grimmer A.-R. Temperature Calibration under Ultrafast MAS Conditions. J. Magn. Reson. 1999;138:182–186. doi: 10.1006/jmre.1999.1717. PubMed DOI

Brus J. Heating of samples induced by fast magic-angle spinning. Solid State Nucl. Magn. Reson. 2000;16:151–160. doi: 10.1016/S0926-2040(00)00061-8. PubMed DOI

Soukupová K., Sassi A., Jeřábek K. Reinforcing of expanded polymer morphology using peroxy radical initiator. React. Funct. Polym. 2009;69:353–357. doi: 10.1016/j.reactfunctpolym.2009.02.008. DOI

Roa-Luna M., Jaramillo-Soto G., Castañeda-Flores P.V., Vivaldo-Lima E. Copolymerization kinetics of styrene and divinylbenzene in the presence of S-thiobenzoyl thioglycolic acid as RAFT agent. Chem. Eng. Technol. 2010;33:1893–1899. doi: 10.1002/ceat.201000257. DOI

Luo Y., Wang X., Li B.G., Zhu S. Toward well-controlled ab initio RAFT emulsion polymerization of styrene mediated by 2-(((Dodecylsulfanyl)carbonothioyl)sulfanyl)propanoic acid. Macromolecules. 2011;44:221–229. doi: 10.1021/ma102378w. DOI

Wan W.M., Pan C.Y. One-pot synthesis of polymeric nanomaterials via RAFT dispersion polymerization induced self-assembly and re-organization. Polym. Chem. 2010;1:1475–1484. doi: 10.1039/c0py00124d. DOI

Law R.V., Sherrington D.C., Snape C.E. Quantitative solid state 13C NMR studies of highly cross-linked poly(divinylbenzene) resins. Macromolecules. 1997;30:2868–2875. doi: 10.1021/ma9616470. DOI

Sevšek U., Brus J., Jeřabek K., Krajnc P. Post polymerisation hypercrosslinking of styrene/divinylbenzene poly(HIPE)s: Creating micropores within macroporous polymer. Polymer. 2014;55:410–415. doi: 10.1016/j.polymer.2013.09.026. DOI

Rouquerol J., Avnir D., Fairbridge C.W., Everett D.H., Haynes J.M., Pernicone N., Ramsay J.D.F., Sing K.S.W., Unger K.K. Recommendations for the characterization of porous solids. Pure Appl. Chem. 1994;66:1739–1758. doi: 10.1351/pac199466081739. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...