• This record comes from PubMed

Multivariate Analysis Approaches for Dimension and Shape Discrimination of Vitis vinifera Varieties

. 2021 Jul 26 ; 10 (8) : . [epub] 20210726

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

In this study, berry dimensions and shape traits, which are important for the design of the grape processing system and the classification of 10 different grape varieties grown in same ecological conditions ('Ata Sarısı', 'Barış', 'Dımışkı', 'Hatun Parmağı', 'Helvani', 'Horoz Karası', 'Hönüsü', 'İtalia', 'Mevlana Sarısı', and 'Red Globe') were determined; differences between the varieties were identified with the use of discriminant analysis. The largest grape varieties were identified as 'Ata Sarısı' and 'Red Globe'. The 'Red Globe' and 'Helvani' varieties had geometrically sphere-like shape. The 'Barış' variety had the lowest size averages. According to elliptic Fourier analysis, the primary source of shape variation was ellipse and sphere-looking varieties. However, shape variation was seen due to the existence of a small number of drop-like varieties. According to discriminant analysis, shape differences of the varieties were defined by two discriminant functions. Based on these discriminant functions, the greatest classification performance was achieved for 'Mevlana Sarısı' and 'Dımışkı'. In scatter plots, three shape definitions (sphere, ellipse, and drop) were made for grape varieties. Cluster analysis revealed 4 sub-groups. The first sub-group included the 'Mevlana Sarısı' variety; the second sub-group included the 'Hönüsü', 'Hatun Parmağı', 'Dımışkı', and 'Horoz Karası' varieties; the third sub-group included the 'Ata Sarısı' variety; the fourth sub-group included the 'Barış', 'Helvani', 'İtalia', and 'Red Globe' varieties. The variety in the first group had a geometrically ellipse-like shape, the largest length, and the smallest width. The size data were the smallest for the second sub-group. The third sub-group, with the ellipse-like shape, had the large size data. The grape varieties the closest to the sphere were classified in the fourth group, and these varieties had the large sizes.

See more in PubMed

Ercisli S., Esitken A., Cangi R., Sahin F. Adventitious root formation of kiwifruit in relation to sampling date, IBA and Agrobacterium rubi inoculation. Plant Growth Regul. 2003;41:133–137. doi: 10.1023/A:1027307720934. DOI

Sansavini S. The role of research and technology in shaping a sustainable fruit industry: European advances and prospects. Rev. Bras. Frutic. 2006;28:550–558. doi: 10.1590/S0100-29452006000300049. DOI

Dogan H., Ercisli S., Jurikova T., Temim E., Leto A., Hadziabulic A., Tosun M., Narmanlioglu H.K., Zia-Ul-Haq M. Physicochemical and antioxidant characteristics of fruits of cape gooseberry (Physalis peruviana L.) from Turkey. Oxid. Commun. 2014;37:1005–1014.

Engin S.P., Mert C. The effects of harvesting time on the physicochemical components of aronia berry. Turk. J. Agric. For. 2020;44:361–370. doi: 10.3906/tar-1903-130. DOI

Gecer M.K., Kan T., Gundogdu M., Ercisli S., Ilhan G., Sagbas H.I. Physicochemical characteristics of wild and cultivated apricots (Prunus armeniaca L.) from Aras valley in Turkey. Genet. Resour. Crop Evol. 2020;67:935–945. doi: 10.1007/s10722-020-00893-9. DOI

Khan N., Fatima F., Haider M.S., Shazadee H., Liu Z., Zheng T., Fang J. Genome-Wide Identification and expression profiling of the polygalacturonase (PG) and pectin methylesterase (PME) genes in grapevine (Vitis vinifera L.) Int. J. Mol. Sci. 2019;20:3180. doi: 10.3390/ijms20133180. PubMed DOI PMC

Sayinci B., Ercisli S., Ozturk I., Eryilmaz Z., Demir B. Determination of size and shape in the ‘Moro’ blood orange and ‘Valencia’ sweet orange cultivar and its mutants using image processing. Not. Bot. Horti Agrobot. Cluj-Napoca. 2012;40:234–242. doi: 10.15835/nbha4016645. DOI

Zhang S., Hu J., Zhang C.F., Guan Y.J., Zhang Y. Genetic analysis of fruit shape traits at different maturation stages in sponge gourd. J. Zhejiang Univ. Sci. B. 2007;8:338–344. doi: 10.1631/jzus.2007.B0338. PubMed DOI PMC

Goddard M.E., Hayes B.J. Genomic selection. J. Anim. Breed. Genet. 2007;124:323–330. doi: 10.1111/j.1439-0388.2007.00702.x. PubMed DOI

Sayıncı B., Kara M., Ercişli S., Duyar Ö., Ertürk Y. Elliptic Fourier analysis for shape distinction of Turkish hazelnut cultivars. Erwerbs-Obstbau. 2015;57:1–11. doi: 10.1007/s10341-014-0221-7. DOI

Feldmann M.J., Hardigan M.A., Famula R.A., López C.M., Tabb A., Cole G.S., Knapp S.J. Multi-dimensional machine learning approaches for fruit shape phenotyping in strawberry. GigaScience. 2020;9:giaa030. doi: 10.1093/gigascience/giaa030. PubMed DOI PMC

Zhang C., Fan X., Liu C., Fang J. Anatomical berry characteristics during the development of grape berries with different shapes. Hortic. Plant J. 2021;7:295–306. doi: 10.1016/j.hpj.2021.04.002. DOI

Ercisli S., Sayinci B., Kara M., Yildiz C., Ozturk I. Determination of size and shape features of walnut (Juglans regia L.) cultivars using image processing. Sci. Hortic. 2012;133:47–55. doi: 10.1016/j.scienta.2011.10.014. DOI

He J.Q., Harrison R.J., Li B. A novel 3D imaging system for strawberry phenotyping. Plant Methods. 2017;13:93. doi: 10.1186/s13007-017-0243-x. PubMed DOI PMC

Demir B., Sayinci B., Sümbül A., Yaman M., Yildiz E., Çetin N., Karakaya O., Ercişli S. Bioactive compounds and physical attributes of Cornus mas genotypes through multivariate approaches. Folia Hortic. 2020;32:189–202. doi: 10.2478/fhort-2020-0018. DOI

Sayıncı B., Ercişli S., Akbulut M., Şavşatlı Y., Baykal H. Determination of shape in fruits of cherry laurel (Prunus laurocerasus) accessions by using Elliptic Fourier analysis. Acta Sci. Pol. Hortoru. 2015;14:63–82.

Hayashi A., Tanabata T., Wada T. A proposal of image analysis system for measuring strawberries. Hort. J. 2017;16:446. (In Japanese)

Osako Y., Yamane H., Lin S.Y., Chen P.A., Tao R. Cultivar discrimination of litchi fruit images using deep learning. Sci. Hortic. 2020;269:109360. doi: 10.1016/j.scienta.2020.109360. DOI

Maeda H., Akagi T., Tao R. Quantitative characterization of fruit shape and its differentiation pattern in diverse persimmon (Diospyros kaki) cultivars. Sci. Hortic. 2018;228:41–48. doi: 10.1016/j.scienta.2017.10.006. DOI

Ates F., Coban H., Kara Z., Sabir A. Ampelographic characterization of some grape cultivars (Vitis vinifera L.) grown in South-western region of Turkey. Bulg. J. Agric. Sci. 2011;17:314–324.

Bodor P., Baranyai L., Ladányi M., Bálo B., Strever A.E., Isztray G.Y.D., Hunter J.J. Stability of ampelometric characteristics of Vitis vinifera L. cv. ‘Syrah’ and ‘Sauvignon blanc’ leaves: Impact of within-vineyard variability and pruning method/bud load. S. Afr. J. Enol. Vitic. 2013;34:129–137. doi: 10.21548/34-1-1088. DOI

Gago P., Santiago J.L., Boso S., Villaverde A.V., Orriols I., Martínez M. Identity of three grapevine varieties from a rediscovered viticulture region in northwest Spain. J. Int. Sci. Vigne Vin. 2013;45:245–254. doi: 10.20870/oeno-one.2011.45.4.1499. DOI

Eyduran S.P., Akin M., Ercisli S., Eyduran E., Maghradze D. Sugars, organic acids, and phenolic compounds of ancient grape cultivars (Vitis vinifera L.) from lgdir province of Eastern Turkey. Biol. Res. 2015;48:2. doi: 10.1186/0717-6287-48-2. PubMed DOI PMC

Isci B., Altindisli A. Ampelographıc characterızatıon of Turkish indigenous grape accessions and European cultivars (Vitis vinifera L.) Int. J. Agric. Environ. Food Sci. 2017;1:1–16.

Khalil S., Tello J., Hamed F., Forneck A. A multivariate approach for the ampelographic discrimination of grapevine (Vitis vinifera) cultivars: Application to local Syrian genetic resources. Genet. Res. Crop Evol. 2017;64:1841–1851. doi: 10.1007/s10722-017-0561-x. DOI

Biniari K., Stavrakaki M. Genetic study of native grapevine varieties of northern, western and central Greece with the use of ampelographic and molecular methods. Not. Bot. Horti Agrobo. 2018;47:46–53. doi: 10.15835/nbha47111213. DOI

Vesna M. Ampelographic and genetic characterization of Montenegrin grapevine varieties. In: Morata A., Loira I., editors. Advances in Grape and Wine Biotechnology. Intech Open; London, UK: 2019. pp. 55–67.

Crupi P., Gasparro M., Caputo A.R. Classification of wine grape biotypes according to their variety and sanitary condition by fingerprinting untargeted analysis. Nat. Prod. Res. 2021;35:659–663. doi: 10.1080/14786419.2019.1586703. PubMed DOI

OIV . OIV Descriptor List for Grape Varieties and Vitis Species. 2nd ed. Organization Intergouvernementale crée par l’Accord International; Paris, France: 2001. [(accessed on 10 June 2021)]. Organisation Internationale de la Vigne et du Vin. Available online: https://www.oiv.int/public/medias/2274/code-2e-edition-finale.pdf.

Kok D., Bal E., Celik S. Influences of various canopy management techniques on wine grape quality of V. vinifera L. cv. Kalecik Karası. Bulg. J. Agric. Sci. 2013;19:1247–1252.

Lamine M., Zemni H., Ziadi S., Chabaane A., Melki I., Mejri S., Zoghlami N. Multivariate analysis and clustering reveal high morphological diversity in Tunisian autochthonous grapes (Vitis vinifera): Insights into characterization, conservation and commercialization. J. Int. Sci. Vigne. Vin. 2014;48:111–122. doi: 10.20870/oeno-one.2014.48.2.1565. DOI

Ashwini S., Hipparagi K., Patil D., Jagadeesh S.L., Suma R., Arun K. Impact of canopy management on growth and yield of wine grapes under northern dry zone of Karnataka. Bioscan. 2016;11:2589–2592.

Bioversity International . Bioversity International Guidelines for the Development of Crop Descriptor Lists. Bioversity International; Rome, Italy: 2007. (Bioversity Technical Bulletin Series).

Wycislo A.P., Clark J.R., Karcher D.E. Fruit shape analysis of Vitis using digital photography. HortScience. 2008;43:677–680. doi: 10.21273/HORTSCI.43.3.677. DOI

Bodor P., Somogyi E., Baranyai L., Lazar J., Balo B. Analysis of the grapevine (Vitis vinifera L.) berry shape by using elliptic Fourier descriptors. Prog. Agric. Eng. Sci. 2020;16:87–93.

Kara M., Sayıncı B., Elkoca E., Öztürk İ., Özmen T.B. Seed size and shape analysis of registered common bean (Phaseolus vulgaris L.) cultivars in Turkey using digital photography. J. Agric. Sci. 2013;19:219–234.

Kara M. Biyolojik Ürünlerin Fiziksel Özellikleri (Tarımsal Ürün ve Gıdaları İçerir). I. Baskı Güven® Bilimsel; İzmir, Turkey: 2017. (In Turkish)

Mohsenin N.N. Physical Properties of Plant and Animal Materials. Gordon and Breach Science Publisher; New York, NY, USA: 1986.

Iwata H., Ukai Y. SHAPE: A computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. J. Hered. 2002;93:384–385. doi: 10.1093/jhered/93.5.384. PubMed DOI

Sayıncı B. Detection of manufacturing defects on orifice geometry of polyacetal (POM) nozzle discs by using the elliptic fourier descriptors. J. Agric. Fac. Bursa Uludağ Univ. 2016;30:57–73.

Neto J.C., Meyer G.E., Jones D.D., Samal A.K. Plant species identification using Elliptic Fourier leaf shape analysis. Comput. Electron. Agric. 2006;50:121–134. doi: 10.1016/j.compag.2005.09.004. DOI

Özkan-Koca A. Ph.D. Thesis. Ankara Üniversitesi Fen Bilimleri Enstitüsü: Biyoloji Anabilim Dalı; Ankara, Turkey: 2012. Ortadoğu’da yayılış gösteren Apis mellifera L. (Hymenoptera: Apidae) Alttürlerinin Geometrik Morfometri Yöntemiyle Analizi; p. 167.

Abiri K., Rezaei M., Tahanian H., Heidari P., Khadivi A. Morphological and pomological variability of a grape (Vitis vinifera L.) germplasm collection. Sci. Hortic. 2020;266:109285. doi: 10.1016/j.scienta.2020.109285. DOI

Khadivi-Khub A., Salimpour A., Rasouli M. Analysis of grape germplasm from Iran based on fruit characteristics. Braz. J. Bot. 2014;37:105–113. doi: 10.1007/s40415-014-0054-5. DOI

Vafaee Y., Ghaderi N., Khadivi A. Morphological variation and marker-fruit trait associations in a collection of grape (Vitis vinifera L.) Sci. Hortic. 2017;225:771–782. doi: 10.1016/j.scienta.2017.08.007. DOI

Ekhvaia J., Akhalkatsi M. Morphological variation and relationships of Georgian populations of Vitis vinifera L. subsp. Sylvestris (C.C. Gmel.) Flora. 2010;205:608–617. doi: 10.1016/j.flora.2009.08.002. DOI

Leão P.C.S., Cruz C.D., Motoike S.Y. Genetic diversity of table grape based on morphoagronomic traits. Sci. Agric. 2011;68:42–49. doi: 10.1590/S0103-90162011000100007. DOI

Esgici R., Özdemir G., Pekitkan G., Eliçin K., Öztürk F., Sessiz A. Engineering properties of the Şire grape (Vitis vinifera L. Cv.) Sci. Papers Ser. B Hortic. 2017;61:195–203.

Abu-Zahra T. Berry size of Thompson seedless as influenced by the application of Gibberellic acid and cane girdling. Pak. J. Bot. 2010;42:1755–1760.

Barbagallo M.G., Guidoni S., Hunter J.J. Berry size and qualitative characteristics of Vitis vinifera L. cv. Syrah. S. Afr. J. Enol. Vitic. 2011;32:129–136. doi: 10.21548/32-1-1372. DOI

Kose B. Effect of rootstock on grafted grapevine quality. Eur. J. Hortic. Sci. 2014;79:197–202.

Bart-Plange A., Dzisi K.A., Ampah J. Effect of drying on selected physical properties of “Asontem” cowpea variety. Int. Sch. Res. Netw. ISRN Agron. 2012 doi: 10.5402/2012/496026. DOI

Gundogdu M., Ozrenk K., Ercisli S., Kan T., Kodad O., Hegedus A. Organic acids, sugars, vitamin C content and some pomological characteristics of eleven hawthorn species (Crataegus spp.) from Turkey. Biol. Res. 2014;47:21. doi: 10.1186/0717-6287-47-21. PubMed DOI PMC

Gecer M.K. Biochemical content in fruits of peach and nectarine cultivars. Turk. J. Agric. For. 2020;44:500–505. doi: 10.3906/tar-1911-8. DOI

Rouphael Y., Colla G. Growth, yield, fruit quality and nutrient uptake of hydroponically cultivated zucchini squash as affected by irrigation systems and growing seasons. Sci. Hortic. 2005;105:177–195. doi: 10.1016/j.scienta.2005.01.025. DOI

Zia-Ul-Haq M., Ahmad S., Qayum M., Ercisli S. Compositional studies and antioxidant potential of Albizia lebbeck (L.) Benth. Pods and seeds. Turk. J. Biol. 2013;37:25–32.

Bujdosó G., Cseke K. The Persian (English) walnut (Juglans regia L.) assortment of Hungary: Nut characteristics and origin. Sci. Hortic. 2021;283:110035. doi: 10.1016/j.scienta.2021.110035. DOI

Kök D., Bal E., Bahar E. Physical and biochemical traits of selected grape varieties cultivated in Tekirdağ, Turkey. Int. J. Sustain. Agric. Manag. Inform. 2017;3:215–223. doi: 10.1504/IJSAMI.2017.090300. DOI

Serce S., Ozgen M., Torun A.A., Ercisli S. Chemical composition, antioxidant activities and total phenolic content of Arbutus andrachne L. (Fam. Ericaceae) (the Greek strawberry tree) fruits from Turkey. J. Food Compos. Anal. 2010;23:619–623. doi: 10.1016/j.jfca.2009.12.007. DOI

Karatas N., Sengul M. Some important physicochemical and bioactive characteristics of the main apricot cultivars from Turkey. Turk. J. Agric. For. 2020;44:651–661. doi: 10.3906/tar-2002-95. DOI

Kaskoniene V., Bimbiraite-Surviliene K., Kaskonas P., Tiso N., Cesoniene L., Daubaras R., Maruska A.S. Changes in the biochemical compounds of Vaccinium myrtillus, Vaccinium vitis-idaea, and forest litter collected from various forest types. Turk. J. Agric. For. 2020;44:557–566. doi: 10.3906/tar-1912-41. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...