The phylogenetic structure of microbial biofilms and free-living bacteria in a small stream
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články
- MeSH
- Archaea klasifikace genetika izolace a purifikace MeSH
- Bacteria klasifikace genetika izolace a purifikace MeSH
- biofilmy * MeSH
- biomasa MeSH
- chemické jevy MeSH
- fylogeneze * MeSH
- geologické sedimenty mikrobiologie MeSH
- hybridizace in situ fluorescenční MeSH
- řeky mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Geografické názvy
- Česká republika MeSH
The phylogenetic composition, bacterial biomass, and biovolume of both planktonic and biofilm communities were studied in a low-order Bystřice stream near Olomouc City, in the Czech Republic. The aim of the study was to compare the microbial communities colonizing different biofilm substrata (stream aggregates, stream sediment, underwater tree roots, stream stones, and aquatic macrophytes) to those of free-living bacteria. The phylogenetic composition was analyzed using fluorescence in situ hybridization for main phylogenetic groups. All phylogenetic groups studied were detected in all sample types. The stream stone was the substratum where nearly all phylogenetic groups were the most abundant, while the lowest proportion to the DAPI-stained cells was found for free-living bacteria. The probe specific for the domain Bacteria detected 20.6 to 45.8 % of DAPI-stained cells while the probe specific for the domain Archaea detected 4.3 to 17.9 %. The most abundant group of Proteobacteria was Alphaproteobacteria with a mean of 14.2 %, and the least abundant was Betaproteobacteria with a mean of 11.4 %. The average value of the Cytophaga-Flavobacteria group was 10.5 %. Total cell numbers and bacterial biomass were highest in sediment and root biofilm. The value of cell biovolume was highest in stone biofilm and lowest in sediment. Overall, this study revealed relevant differences in phylogenetic composition, bacterial biomass, and biovolume between different stream biofilms and free-living bacteria.
Zobrazit více v PubMed
Appl Environ Microbiol. 1999 Jul;65(7):3192-204 PubMed
Appl Environ Microbiol. 2001 Feb;67(2):632-45 PubMed
Appl Environ Microbiol. 1985 Jun;49(6):1488-93 PubMed
Appl Environ Microbiol. 2003 Dec;69(12):6961-8 PubMed
Appl Environ Microbiol. 2003 Nov;69(11):6587-96 PubMed
FEMS Microbiol Ecol. 2000 Aug 1;33(2):157-170 PubMed
Appl Environ Microbiol. 2000 Dec;66(12):5116-22 PubMed
FEMS Microbiol Ecol. 2006 Apr;56(1):79-94 PubMed
FEMS Microbiol Ecol. 2003 May 1;44(1):3-15 PubMed
Microb Ecol. 1999 May;37(4):225-237 PubMed
J Microbiol Methods. 2008 Sep;75(1):103-8 PubMed
J Microbiol Methods. 2004 Feb;56(2):151-9 PubMed
Acta Orthop. 2009 Apr;80(2):245-50 PubMed
Appl Environ Microbiol. 2005 Nov;71(11):6784-92 PubMed
Appl Environ Microbiol. 2000 Jul;66(7):3078-82 PubMed
Appl Environ Microbiol. 1994 Apr;60(4):1232-40 PubMed
Appl Environ Microbiol. 2005 Feb;71(2):679-90 PubMed
Microb Ecol. 2007 Jan;53(1):153-62 PubMed
Appl Environ Microbiol. 2006 Mar;72(3):1932-8 PubMed
Appl Environ Microbiol. 2001 Feb;67(2):799-807 PubMed
Appl Environ Microbiol. 2001 Jun;67(6):2799-809 PubMed
FEMS Microbiol Ecol. 2003 Dec 1;46(3):331-47 PubMed
Microbiology (Reading). 1996 May;142 ( Pt 5):1097-1106 PubMed
Appl Environ Microbiol. 1990 Jun;56(6):1919-25 PubMed
Microb Ecol. 2004 Jan;47(1):87-95 PubMed
Environ Microbiol. 2005 Oct;7(10):1633-40 PubMed
J Microbiol Methods. 2008 Oct;75(2):237-43 PubMed
BMC Microbiol. 2008 Apr 10;8:58 PubMed
Annu Rev Phytopathol. 2003;41:429-53 PubMed
ISME J. 2009 Feb;3(2):266-70 PubMed
J Eukaryot Microbiol. 2000 Jan-Feb;47(1):62-9 PubMed
FEMS Microbiol Ecol. 2003 Oct 1;46(1):31-8 PubMed
J Microbiol Methods. 2003 Aug;54(2):257-67 PubMed
J Microbiol Methods. 2007 Jun;69(3):523-8 PubMed
J Bacteriol. 1990 Feb;172(2):762-70 PubMed