• This record comes from PubMed

The receptor-type protein tyrosine phosphatase CD45 promotes onset and severity of IL-1β-mediated autoinflammatory osteomyelitis

. 2021 Oct ; 297 (4) : 101131. [epub] 20210827

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 34461100
PubMed Central PMC8455366
DOI 10.1016/j.jbc.2021.101131
PII: S0021-9258(21)00932-7
Knihovny.cz E-resources

A number of human autoinflammatory diseases manifest with severe inflammatory bone destruction. Mouse models of these diseases represent valuable tools that help us to understand molecular mechanisms triggering this bone autoinflammation. The Pstpip2cmo mouse strain is among the best characterized of these; it harbors a mutation resulting in the loss of adaptor protein PSTPIP2 and development of autoinflammatory osteomyelitis. In Pstpip2cmo mice, overproduction of interleukin-1β (IL-1β) and reactive oxygen species by neutrophil granulocytes leads to spontaneous inflammation of the bones and surrounding soft tissues. However, the upstream signaling events leading to this overproduction are poorly characterized. Here, we show that Pstpip2cmo mice deficient in major regulator of Src-family kinases (SFKs) receptor-type protein tyrosine phosphatase CD45 display delayed onset and lower severity of the disease, while the development of autoinflammation is not affected by deficiencies in Toll-like receptor signaling. Our data also show deregulation of pro-IL-1β production by Pstpip2cmo neutrophils that are attenuated by CD45 deficiency. These data suggest a role for SFKs in autoinflammation. Together with previously published work on the involvement of protein tyrosine kinase spleen tyrosine kinase, they point to the role of receptors containing immunoreceptor tyrosine-based activation motifs, which after phosphorylation by SFKs recruit spleen tyrosine kinase for further signal propagation. We propose that this class of receptors triggers the events resulting in increased pro-IL-1β synthesis and disease initiation and/or progression.

See more in PubMed

Martinez-Quiles N., Goldbach-Mansky R. Updates on autoinflammatory diseases. Curr. Opin. Immunol. 2018;55:97–105. PubMed

Byrd L., Grossmann M., Potter M., Shen-Ong G.L. Chronic multifocal osteomyelitis, a new recessive mutation on chromosome 18 of the mouse. Genomics. 1991;11:794–798. PubMed

Ferguson P.J., Bing X., Vasef M.A., Ochoa L.A., Mahgoub A., Waldschmidt T.J., Tygrett L.T., Schlueter A.J., El-Shanti H. A missense mutation in pstpip2 is associated with the murine autoinflammatory disorder chronic multifocal osteomyelitis. Bone. 2006;38:41–47. PubMed PMC

Chitu V., Ferguson P.J., de Bruijn R., Schlueter A.J., Ochoa L.A., Waldschmidt T.J., Yeung Y.G., Stanley E.R. Primed innate immunity leads to autoinflammatory disease in PSTPIP2-deficient cmo mice. Blood. 2009;114:2497–2505. PubMed PMC

Hurtado-Nedelec M., Chollet-Martin S., Chapeton D., Hugot J.P., Hayem G., Gerard B. Genetic susceptibility factors in a cohort of 38 patients with SAPHO syndrome: A study of PSTPIP2, NOD2, and LPIN2 genes. J. Rheumatol. 2010;37:401–409. PubMed

Lukens J.R., Gross J.M., Calabrese C., Iwakura Y., Lamkanfi M., Vogel P., Kanneganti T.D. Critical role for inflammasome-independent IL-1beta production in osteomyelitis. Proc. Natl. Acad. Sci. U. S. A. 2014;111:1066–1071. PubMed PMC

Lukens J.R., Gurung P., Vogel P., Johnson G.R., Carter R.A., McGoldrick D.J., Bandi S.R., Calabrese C.R., Walle L.V., Lamkanfi M., Kanneganti T.-D. Dietary modulation of the microbiome affects autoinflammatory disease. Nature. 2014;516:246–249. PubMed PMC

Cassel S.L., Janczy J.R., Bing X., Wilson S.P., Olivier A.K., Otero J.E., Iwakura Y., Shayakhmetov D.M., Bassuk A.G., Abu-Amer Y., Brogden K.A., Burns T.L., Sutterwala F.S., Ferguson P.J. Inflammasome-independent IL-1beta mediates autoinflammatory disease in Pstpip2-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 2014;111:1072–1077. PubMed PMC

Kralova J., Drobek A., Prochazka J., Spoutil F., Fabisik M., Glatzova D., Borna S., Pokorna J., Skopcova T., Angelisova P., Gregor M., Kovarik P., Sedlacek R., Brdicka T. Dysregulated NADPH oxidase promotes bone damage in murine model of autoinflammatory osteomyelitis. J. Immunol. 2020;204:1607–1620. PubMed

Drobek A., Kralova J., Skopcova T., Kucova M., Novak P., Angelisova P., Otahal P., Alberich-Jorda M., Brdicka T. PSTPIP2, a protein associated with autoinflammatory disease, interacts with inhibitory enzymes SHIP1 and Csk. J. Immunol. 2015;195:3416–3426. PubMed

Wu Y., Dowbenko D., Lasky L.A. PSTPIP 2, a second tyrosine phosphorylated, cytoskeletal-associated protein that binds a PEST-type protein-tyrosine phosphatase. J. Biol. Chem. 1998;273:30487–30496. PubMed

Cloutier J.F., Veillette A. Association of inhibitory tyrosine protein kinase p50csk with protein tyrosine phosphatase PEP in T cells and other hemopoietic cells. EMBO J. 1996;15:4909–4918. PubMed PMC

Cloutier J.F., Veillette A. Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J. Exp. Med. 1999;189:111–121. PubMed PMC

Davidson D., Cloutier J.F., Gregorieff A., Veillette A. Inhibitory tyrosine protein kinase p50csk is associated with protein-tyrosine phosphatase PTP-PEST in hemopoietic and non-hemopoietic cells. J. Biol. Chem. 1997;272:23455–23462. PubMed

Wang B., Lemay S., Tsai S., Veillette A. SH2 domain-mediated interaction of inhibitory protein tyrosine kinase Csk with protein tyrosine phosphatase-HSCF. Mol. Cell Biol. 2001;21:1077–1088. PubMed PMC

Futosi K., Mócsai A. Tyrosine kinase signaling pathways in neutrophils. Immunol. Rev. 2016;273:121–139. PubMed

Chung I.C., Yuan S.N., OuYang C.N., Lin H.C., Huang K.Y., Chen Y.J., Chung A.K., Chu C.L., Ojcius D.M., Chang Y.S., Chen L.C. Src-family kinase-Cbl axis negatively regulates NLRP3 inflammasome activation. Cell Death Dis. 2018;9:1109. PubMed PMC

Shio M.T., Eisenbarth S.C., Savaria M., Vinet A.F., Bellemare M.J., Harder K.W., Sutterwala F.S., Bohle D.S., Descoteaux A., Flavell R.A., Olivier M. Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog. 2009;5 PubMed PMC

Kankkunen P., Valimaki E., Rintahaka J., Palomaki J., Nyman T., Alenius H., Wolff H., Matikainen S. Trichothecene mycotoxins activate NLRP3 inflammasome through a P2X7 receptor and Src tyrosine kinase dependent pathway. Hum. Immunol. 2014;75:134–140. PubMed

Lin G., Tang J., Guo H., Xiao Y., Gupta N., Tang N., Zhang J. Tyrosine phosphorylation of NLRP3 by Lyn suppresses NLRP3 inflammasome activation. J. Immunol. 2017;198:136.2.

Spalinger M.R., Lang S., Gottier C., Dai X., Rawlings D.J., Chan A.C., Rogler G., Scharl M. PTPN22 regulates NLRP3-mediated IL1B secretion in an autophagy-dependent manner. Autophagy. 2017;13:1590–1601. PubMed PMC

Mambwe B., Neo K., Javanmard Khameneh H., Leong K.W.K., Colantuoni M., Vacca M., Muimo R., Mortellaro A. Tyrosine dephosphorylation of ASC modulates the activation of the NLRP3 and AIM2 inflammasomes. Front. Immunol. 2019;10:1556. PubMed PMC

Spalinger M.R., Schwarzfischer M., Scharl M. The role of protein tyrosine phosphatases in inflammasome activation. Int. J. Mol. Sci. 2020;21 PubMed PMC

Gurung P., Burton A., Kanneganti T.D. NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1beta-mediated osteomyelitis. Proc. Natl. Acad. Sci. U. S. A. 2016;113:4452–4457. PubMed PMC

Phillips F.C., Gurung P., Kanneganti T.D. Microbiota and caspase-1/caspase-8 regulate IL-1beta-mediated bone disease. Gut Microbes. 2016;7:334–341. PubMed PMC

Ear T., Tatsiy O., Allard F.L., McDonald P.P. Regulation of discrete functional responses by Syk and src family tyrosine kinases in human neutrophils. J. Immunol. Res. 2017;2017:4347121. PubMed PMC

Hermiston M.L., Xu Z., Weiss A. CD45: A critical regulator of signaling thresholds in immune cells. Annu. Rev. Immunol. 2003;21:107–137. PubMed

Zhu J.W., Brdicka T., Katsumoto T.R., Lin J., Weiss A. Structurally distinct phosphatases CD45 and CD148 both regulate B cell and macrophage immunoreceptor signaling. Immunity. 2008;28:183–196. PubMed PMC

Hou B., Reizis B., DeFranco A.L. Toll-like receptors activate innate and adaptive immunity by using dendritic cell-intrinsic and -extrinsic mechanisms. Immunity. 2008;29:272–282. PubMed PMC

Hoebe K., Du X., Georgel P., Janssen E., Tabeta K., Kim S.O., Goode J., Lin P., Mann N., Mudd S., Crozat K., Sovath S., Han J., Beutler B. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature. 2003;424:743–748. PubMed

Byth K.F., Conroy L.A., Howlett S., Smith A.J., May J., Alexander D.R., Holmes N. CD45-null transgenic mice reveal a positive regulatory role for CD45 in early thymocyte development, in the selection of CD4+CD8+ thymocytes, and B cell maturation. J. Exp. Med. 1996;183:1707–1718. PubMed PMC

Nada S., Okada M., MacAuley A., Cooper J.A., Nakagawa H. Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature. 1991;351:69–72. PubMed

Sicheri F., Kuriyan J. Structures of Src-family tyrosine kinases. Curr. Opin. Struct. Biol. 1997;7:777–785. PubMed

Netea M.G., Simon A., van de Veerdonk F., Kullberg B.J., Van der Meer J.W., Joosten L.A. IL-1beta processing in host defense: Beyond the inflammasomes. PLoS Pathog. 2010;6 PubMed PMC

Dasari T.K., Geiger R., Karki R., Banoth B., Sharma B.R., Gurung P., Burton A., Kanneganti T.D. The nonreceptor tyrosine kinase SYK drives caspase-8/NLRP3 inflammasome-mediated autoinflammatory osteomyelitis. J. Biol. Chem. 2020;295:3394–3400. PubMed PMC

Furukawa T., Itoh M., Krueger N.X., Streuli M., Saito H. Specific interaction of the CD45 protein-tyrosine phosphatase with tyrosine-phosphorylated CD3 zeta chain. Proc. Natl. Acad. Sci. U. S. A. 1994;91:10928–10932. PubMed PMC

Wu L., Fu J., Shen S.H. SKAP55 coupled with CD45 positively regulates T-cell receptor-mediated gene transcription. Mol. Cell Biol. 2002;22:2673–2686. PubMed PMC

Irie-Sasaki J., Sasaki T., Matsumoto W., Opavsky A., Cheng M., Welstead G., Griffiths E., Krawczyk C., Richardson C.D., Aitken K., Iscove N., Koretzky G., Johnson P., Liu P., Rothstein D.M. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature. 2001;409:349–354. PubMed

Davidson D., Bakinowski M., Thomas M.L., Horejsi V., Veillette A. Phosphorylation-dependent regulation of T-cell activation by PAG/Cbp, a lipid raft-associated transmembrane adaptor. Mol. Cell Biol. 2003;23:2017–2028. PubMed PMC

Latour S., Veillette A. Proximal protein tyrosine kinases in immunoreceptor signaling. Curr. Opin. Immunol. 2001;13:299–306. PubMed

Jakus Z., Fodor S., Abram C.L., Lowell C.A., Mócsai A. Immunoreceptor-like signaling by beta 2 and beta 3 integrins. Trends Cell Biol. 2007;17:493–501. PubMed

Lewis Marffy A.L., McCarthy A.J. Leukocyte immunoglobulin-like receptors (LILRs) on human neutrophils: Modulators of infection and immunity. Front. Immunol. 2020;11:857. PubMed PMC

Radjabova V., Mastroeni P., Skjødt K., Zaccone P., de Bono B., Goodall J.C., Chilvers E.R., Juss J.K., Jones D.C., Trowsdale J., Barrow A.D. TARM1 is a novel leukocyte receptor complex-encoded ITAM receptor that costimulates proinflammatory cytokine secretion by macrophages and neutrophils. J. Immunol. 2015;195:3149–3159. PubMed PMC

Arts R.J., Joosten L.A., van der Meer J.W., Netea M.G. TREM-1: Intracellular signaling pathways and interaction with pattern recognition receptors. J. Leukoc. Biol. 2013;93:209–215. PubMed

Korkmaz B., Caughey G.H., Chapple I., Gauthier F., Hirschfeld J., Jenne D.E., Kettritz R., Lalmanach G., Lamort A.S., Lauritzen C., Łȩgowska M., Lesner A., Marchand-Adam S., McKaig S.J., Moss C. Therapeutic targeting of cathepsin C: From pathophysiology to treatment. Pharmacol. Ther. 2018;190:202–236. PubMed

Swanson K.V., Deng M., Ting J.P. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 2019;19:477–489. PubMed PMC

Fitzer-Attas C.J., Lowry M., Crowley M.T., Finn A.J., Meng F., DeFranco A.L., Lowell C.A. Fcgamma receptor-mediated phagocytosis in macrophages lacking the Src family tyrosine kinases Hck, Fgr, and Lyn. J. Exp. Med. 2000;191:669–682. PubMed PMC

Hagn M., Marschall S., Hrabè de Angelis M. EMMA--the European mouse mutant archive. Brief Funct. Genomic Proteomic. 2007;6:186–192. PubMed

Goodridge H.S., Reyes C.N., Becker C.A., Katsumoto T.R., Ma J., Wolf A.J., Bose N., Chan A.S., Magee A.S., Danielson M.E., Weiss A., Vasilakos J.P., Underhill D.M. Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse. Nature. 2011;472:471–475. PubMed PMC

Bedouhene S., Moulti-Mati F., Hurtado-Nedelec M., Dang P.M., El-Benna J. Luminol-amplified chemiluminescence detects mainly superoxide anion produced by human neutrophils. Am. J. Blood Res. 2017;7:41–48. PubMed PMC

Unkeless J.C. Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J. Exp. Med. 1979;150:580–596. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...