The receptor-type protein tyrosine phosphatase CD45 promotes onset and severity of IL-1β-mediated autoinflammatory osteomyelitis
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34461100
PubMed Central
PMC8455366
DOI
10.1016/j.jbc.2021.101131
PII: S0021-9258(21)00932-7
Knihovny.cz E-resources
- Keywords
- CD45, PSTPIP2, PTPRC, autoinflammation, chronic recurrent multifocal osteomyelitis,
- MeSH
- Adaptor Proteins, Signal Transducing genetics immunology MeSH
- Leukocyte Common Antigens genetics immunology MeSH
- Cytoskeletal Proteins genetics immunology MeSH
- Diabetes Mellitus, Type 1 genetics immunology pathology MeSH
- Interleukin-1beta genetics immunology MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Neutrophils immunology pathology MeSH
- Osteomyelitis genetics immunology pathology MeSH
- Signal Transduction genetics immunology MeSH
- Severity of Illness Index MeSH
- Toll-Like Receptors genetics immunology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adaptor Proteins, Signal Transducing MeSH
- Leukocyte Common Antigens MeSH
- Cytoskeletal Proteins MeSH
- IL1B protein, mouse MeSH Browser
- Interleukin-1beta MeSH
- Pstpip2 protein, mouse MeSH Browser
- Ptprc protein, mouse MeSH Browser
- Toll-Like Receptors MeSH
A number of human autoinflammatory diseases manifest with severe inflammatory bone destruction. Mouse models of these diseases represent valuable tools that help us to understand molecular mechanisms triggering this bone autoinflammation. The Pstpip2cmo mouse strain is among the best characterized of these; it harbors a mutation resulting in the loss of adaptor protein PSTPIP2 and development of autoinflammatory osteomyelitis. In Pstpip2cmo mice, overproduction of interleukin-1β (IL-1β) and reactive oxygen species by neutrophil granulocytes leads to spontaneous inflammation of the bones and surrounding soft tissues. However, the upstream signaling events leading to this overproduction are poorly characterized. Here, we show that Pstpip2cmo mice deficient in major regulator of Src-family kinases (SFKs) receptor-type protein tyrosine phosphatase CD45 display delayed onset and lower severity of the disease, while the development of autoinflammation is not affected by deficiencies in Toll-like receptor signaling. Our data also show deregulation of pro-IL-1β production by Pstpip2cmo neutrophils that are attenuated by CD45 deficiency. These data suggest a role for SFKs in autoinflammation. Together with previously published work on the involvement of protein tyrosine kinase spleen tyrosine kinase, they point to the role of receptors containing immunoreceptor tyrosine-based activation motifs, which after phosphorylation by SFKs recruit spleen tyrosine kinase for further signal propagation. We propose that this class of receptors triggers the events resulting in increased pro-IL-1β synthesis and disease initiation and/or progression.
See more in PubMed
Martinez-Quiles N., Goldbach-Mansky R. Updates on autoinflammatory diseases. Curr. Opin. Immunol. 2018;55:97–105. PubMed
Byrd L., Grossmann M., Potter M., Shen-Ong G.L. Chronic multifocal osteomyelitis, a new recessive mutation on chromosome 18 of the mouse. Genomics. 1991;11:794–798. PubMed
Ferguson P.J., Bing X., Vasef M.A., Ochoa L.A., Mahgoub A., Waldschmidt T.J., Tygrett L.T., Schlueter A.J., El-Shanti H. A missense mutation in pstpip2 is associated with the murine autoinflammatory disorder chronic multifocal osteomyelitis. Bone. 2006;38:41–47. PubMed PMC
Chitu V., Ferguson P.J., de Bruijn R., Schlueter A.J., Ochoa L.A., Waldschmidt T.J., Yeung Y.G., Stanley E.R. Primed innate immunity leads to autoinflammatory disease in PSTPIP2-deficient cmo mice. Blood. 2009;114:2497–2505. PubMed PMC
Hurtado-Nedelec M., Chollet-Martin S., Chapeton D., Hugot J.P., Hayem G., Gerard B. Genetic susceptibility factors in a cohort of 38 patients with SAPHO syndrome: A study of PSTPIP2, NOD2, and LPIN2 genes. J. Rheumatol. 2010;37:401–409. PubMed
Lukens J.R., Gross J.M., Calabrese C., Iwakura Y., Lamkanfi M., Vogel P., Kanneganti T.D. Critical role for inflammasome-independent IL-1beta production in osteomyelitis. Proc. Natl. Acad. Sci. U. S. A. 2014;111:1066–1071. PubMed PMC
Lukens J.R., Gurung P., Vogel P., Johnson G.R., Carter R.A., McGoldrick D.J., Bandi S.R., Calabrese C.R., Walle L.V., Lamkanfi M., Kanneganti T.-D. Dietary modulation of the microbiome affects autoinflammatory disease. Nature. 2014;516:246–249. PubMed PMC
Cassel S.L., Janczy J.R., Bing X., Wilson S.P., Olivier A.K., Otero J.E., Iwakura Y., Shayakhmetov D.M., Bassuk A.G., Abu-Amer Y., Brogden K.A., Burns T.L., Sutterwala F.S., Ferguson P.J. Inflammasome-independent IL-1beta mediates autoinflammatory disease in Pstpip2-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 2014;111:1072–1077. PubMed PMC
Kralova J., Drobek A., Prochazka J., Spoutil F., Fabisik M., Glatzova D., Borna S., Pokorna J., Skopcova T., Angelisova P., Gregor M., Kovarik P., Sedlacek R., Brdicka T. Dysregulated NADPH oxidase promotes bone damage in murine model of autoinflammatory osteomyelitis. J. Immunol. 2020;204:1607–1620. PubMed
Drobek A., Kralova J., Skopcova T., Kucova M., Novak P., Angelisova P., Otahal P., Alberich-Jorda M., Brdicka T. PSTPIP2, a protein associated with autoinflammatory disease, interacts with inhibitory enzymes SHIP1 and Csk. J. Immunol. 2015;195:3416–3426. PubMed
Wu Y., Dowbenko D., Lasky L.A. PSTPIP 2, a second tyrosine phosphorylated, cytoskeletal-associated protein that binds a PEST-type protein-tyrosine phosphatase. J. Biol. Chem. 1998;273:30487–30496. PubMed
Cloutier J.F., Veillette A. Association of inhibitory tyrosine protein kinase p50csk with protein tyrosine phosphatase PEP in T cells and other hemopoietic cells. EMBO J. 1996;15:4909–4918. PubMed PMC
Cloutier J.F., Veillette A. Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J. Exp. Med. 1999;189:111–121. PubMed PMC
Davidson D., Cloutier J.F., Gregorieff A., Veillette A. Inhibitory tyrosine protein kinase p50csk is associated with protein-tyrosine phosphatase PTP-PEST in hemopoietic and non-hemopoietic cells. J. Biol. Chem. 1997;272:23455–23462. PubMed
Wang B., Lemay S., Tsai S., Veillette A. SH2 domain-mediated interaction of inhibitory protein tyrosine kinase Csk with protein tyrosine phosphatase-HSCF. Mol. Cell Biol. 2001;21:1077–1088. PubMed PMC
Futosi K., Mócsai A. Tyrosine kinase signaling pathways in neutrophils. Immunol. Rev. 2016;273:121–139. PubMed
Chung I.C., Yuan S.N., OuYang C.N., Lin H.C., Huang K.Y., Chen Y.J., Chung A.K., Chu C.L., Ojcius D.M., Chang Y.S., Chen L.C. Src-family kinase-Cbl axis negatively regulates NLRP3 inflammasome activation. Cell Death Dis. 2018;9:1109. PubMed PMC
Shio M.T., Eisenbarth S.C., Savaria M., Vinet A.F., Bellemare M.J., Harder K.W., Sutterwala F.S., Bohle D.S., Descoteaux A., Flavell R.A., Olivier M. Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog. 2009;5 PubMed PMC
Kankkunen P., Valimaki E., Rintahaka J., Palomaki J., Nyman T., Alenius H., Wolff H., Matikainen S. Trichothecene mycotoxins activate NLRP3 inflammasome through a P2X7 receptor and Src tyrosine kinase dependent pathway. Hum. Immunol. 2014;75:134–140. PubMed
Lin G., Tang J., Guo H., Xiao Y., Gupta N., Tang N., Zhang J. Tyrosine phosphorylation of NLRP3 by Lyn suppresses NLRP3 inflammasome activation. J. Immunol. 2017;198:136.2.
Spalinger M.R., Lang S., Gottier C., Dai X., Rawlings D.J., Chan A.C., Rogler G., Scharl M. PTPN22 regulates NLRP3-mediated IL1B secretion in an autophagy-dependent manner. Autophagy. 2017;13:1590–1601. PubMed PMC
Mambwe B., Neo K., Javanmard Khameneh H., Leong K.W.K., Colantuoni M., Vacca M., Muimo R., Mortellaro A. Tyrosine dephosphorylation of ASC modulates the activation of the NLRP3 and AIM2 inflammasomes. Front. Immunol. 2019;10:1556. PubMed PMC
Spalinger M.R., Schwarzfischer M., Scharl M. The role of protein tyrosine phosphatases in inflammasome activation. Int. J. Mol. Sci. 2020;21 PubMed PMC
Gurung P., Burton A., Kanneganti T.D. NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1beta-mediated osteomyelitis. Proc. Natl. Acad. Sci. U. S. A. 2016;113:4452–4457. PubMed PMC
Phillips F.C., Gurung P., Kanneganti T.D. Microbiota and caspase-1/caspase-8 regulate IL-1beta-mediated bone disease. Gut Microbes. 2016;7:334–341. PubMed PMC
Ear T., Tatsiy O., Allard F.L., McDonald P.P. Regulation of discrete functional responses by Syk and src family tyrosine kinases in human neutrophils. J. Immunol. Res. 2017;2017:4347121. PubMed PMC
Hermiston M.L., Xu Z., Weiss A. CD45: A critical regulator of signaling thresholds in immune cells. Annu. Rev. Immunol. 2003;21:107–137. PubMed
Zhu J.W., Brdicka T., Katsumoto T.R., Lin J., Weiss A. Structurally distinct phosphatases CD45 and CD148 both regulate B cell and macrophage immunoreceptor signaling. Immunity. 2008;28:183–196. PubMed PMC
Hou B., Reizis B., DeFranco A.L. Toll-like receptors activate innate and adaptive immunity by using dendritic cell-intrinsic and -extrinsic mechanisms. Immunity. 2008;29:272–282. PubMed PMC
Hoebe K., Du X., Georgel P., Janssen E., Tabeta K., Kim S.O., Goode J., Lin P., Mann N., Mudd S., Crozat K., Sovath S., Han J., Beutler B. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature. 2003;424:743–748. PubMed
Byth K.F., Conroy L.A., Howlett S., Smith A.J., May J., Alexander D.R., Holmes N. CD45-null transgenic mice reveal a positive regulatory role for CD45 in early thymocyte development, in the selection of CD4+CD8+ thymocytes, and B cell maturation. J. Exp. Med. 1996;183:1707–1718. PubMed PMC
Nada S., Okada M., MacAuley A., Cooper J.A., Nakagawa H. Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature. 1991;351:69–72. PubMed
Sicheri F., Kuriyan J. Structures of Src-family tyrosine kinases. Curr. Opin. Struct. Biol. 1997;7:777–785. PubMed
Netea M.G., Simon A., van de Veerdonk F., Kullberg B.J., Van der Meer J.W., Joosten L.A. IL-1beta processing in host defense: Beyond the inflammasomes. PLoS Pathog. 2010;6 PubMed PMC
Dasari T.K., Geiger R., Karki R., Banoth B., Sharma B.R., Gurung P., Burton A., Kanneganti T.D. The nonreceptor tyrosine kinase SYK drives caspase-8/NLRP3 inflammasome-mediated autoinflammatory osteomyelitis. J. Biol. Chem. 2020;295:3394–3400. PubMed PMC
Furukawa T., Itoh M., Krueger N.X., Streuli M., Saito H. Specific interaction of the CD45 protein-tyrosine phosphatase with tyrosine-phosphorylated CD3 zeta chain. Proc. Natl. Acad. Sci. U. S. A. 1994;91:10928–10932. PubMed PMC
Wu L., Fu J., Shen S.H. SKAP55 coupled with CD45 positively regulates T-cell receptor-mediated gene transcription. Mol. Cell Biol. 2002;22:2673–2686. PubMed PMC
Irie-Sasaki J., Sasaki T., Matsumoto W., Opavsky A., Cheng M., Welstead G., Griffiths E., Krawczyk C., Richardson C.D., Aitken K., Iscove N., Koretzky G., Johnson P., Liu P., Rothstein D.M. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature. 2001;409:349–354. PubMed
Davidson D., Bakinowski M., Thomas M.L., Horejsi V., Veillette A. Phosphorylation-dependent regulation of T-cell activation by PAG/Cbp, a lipid raft-associated transmembrane adaptor. Mol. Cell Biol. 2003;23:2017–2028. PubMed PMC
Latour S., Veillette A. Proximal protein tyrosine kinases in immunoreceptor signaling. Curr. Opin. Immunol. 2001;13:299–306. PubMed
Jakus Z., Fodor S., Abram C.L., Lowell C.A., Mócsai A. Immunoreceptor-like signaling by beta 2 and beta 3 integrins. Trends Cell Biol. 2007;17:493–501. PubMed
Lewis Marffy A.L., McCarthy A.J. Leukocyte immunoglobulin-like receptors (LILRs) on human neutrophils: Modulators of infection and immunity. Front. Immunol. 2020;11:857. PubMed PMC
Radjabova V., Mastroeni P., Skjødt K., Zaccone P., de Bono B., Goodall J.C., Chilvers E.R., Juss J.K., Jones D.C., Trowsdale J., Barrow A.D. TARM1 is a novel leukocyte receptor complex-encoded ITAM receptor that costimulates proinflammatory cytokine secretion by macrophages and neutrophils. J. Immunol. 2015;195:3149–3159. PubMed PMC
Arts R.J., Joosten L.A., van der Meer J.W., Netea M.G. TREM-1: Intracellular signaling pathways and interaction with pattern recognition receptors. J. Leukoc. Biol. 2013;93:209–215. PubMed
Korkmaz B., Caughey G.H., Chapple I., Gauthier F., Hirschfeld J., Jenne D.E., Kettritz R., Lalmanach G., Lamort A.S., Lauritzen C., Łȩgowska M., Lesner A., Marchand-Adam S., McKaig S.J., Moss C. Therapeutic targeting of cathepsin C: From pathophysiology to treatment. Pharmacol. Ther. 2018;190:202–236. PubMed
Swanson K.V., Deng M., Ting J.P. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 2019;19:477–489. PubMed PMC
Fitzer-Attas C.J., Lowry M., Crowley M.T., Finn A.J., Meng F., DeFranco A.L., Lowell C.A. Fcgamma receptor-mediated phagocytosis in macrophages lacking the Src family tyrosine kinases Hck, Fgr, and Lyn. J. Exp. Med. 2000;191:669–682. PubMed PMC
Hagn M., Marschall S., Hrabè de Angelis M. EMMA--the European mouse mutant archive. Brief Funct. Genomic Proteomic. 2007;6:186–192. PubMed
Goodridge H.S., Reyes C.N., Becker C.A., Katsumoto T.R., Ma J., Wolf A.J., Bose N., Chan A.S., Magee A.S., Danielson M.E., Weiss A., Vasilakos J.P., Underhill D.M. Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse. Nature. 2011;472:471–475. PubMed PMC
Bedouhene S., Moulti-Mati F., Hurtado-Nedelec M., Dang P.M., El-Benna J. Luminol-amplified chemiluminescence detects mainly superoxide anion produced by human neutrophils. Am. J. Blood Res. 2017;7:41–48. PubMed PMC
Unkeless J.C. Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J. Exp. Med. 1979;150:580–596. PubMed PMC