Homeostatic model of human thermoregulation with bi-stability
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34462454
PubMed Central
PMC8405675
DOI
10.1038/s41598-021-96280-0
PII: 10.1038/s41598-021-96280-0
Knihovny.cz E-resources
- MeSH
- Acclimatization MeSH
- Models, Biological MeSH
- Adaptation, Physiological MeSH
- Homeostasis * MeSH
- Humans MeSH
- Body Temperature * MeSH
- Models, Theoretical MeSH
- Thermodynamics MeSH
- Body Temperature Regulation * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
All homoiothermic organisms are capable of maintaining a stable body temperature using various negative feedback mechanisms. However, current models cannot satisfactorily describe the thermal adaptation of homoiothermic living systems in a physiologically meaningful way. Previously, we introduced stress entropic load, a novel variable designed to quantify adaptation costs, i.e. the stress of the organism, using a thermodynamic approach. In this study, we use stress entropic load as a starting point for the construction of a novel dynamical model of human thermoregulation. This model exhibits bi-stable mechanisms, a physiologically plausible features which has thus far not been demonstrated using a mathematical model. This finding allows us to predict critical points at which a living system, in this case a human body, may proceed towards two stabilities, only one of which is compatible with being alive. In the future, this may allow us to quantify not only the direction but rather the extent of therapeutic intervention in critical care patients.
Department of Mathematics and Statistics Faculty of Science Masaryk University Brno Czech Republic
RECETOX Faculty of Science Masaryk University Brno Czech Republic
See more in PubMed
Cannon WB. Organization for physiological homeostasis. Physiol. Rev. 1929;9:399–431. doi: 10.1152/physrev.1929.9.3.399. DOI
Bernard, C. Les Phenomenes de la Vie (Librairie J.-B. Baillière et fils, Paris, 1878), vols. 1-2 edn.
Cannon, W. The Way of an Investigator: A Scientist’s Experiences in Medical Research (Hafner Publishing Company, 1945),
Nijhout HF, Best J, Reed MC. Escape from homeostasis. Math. Biosci. 2014;257:104–110. doi: 10.1016/j.mbs.2014.08.015. PubMed DOI
Modell H, et al. A physiologist’s view of homeostasis. Adv. Physiol. Educ. 2015;39:259–266. doi: 10.1152/advan.00107.2015. PubMed DOI PMC
Selye H. A syndrome produced by diverse nocuous agents. Nature. 1936;138:32–32. doi: 10.1038/138032a0. PubMed DOI
Selye H. The general adaptation syndrome and the diseases of adaptation. J. Clin. Endocrinol. Metab. 1946;6:117–230. doi: 10.1210/jcem-6-2-117. PubMed DOI
Bienertová-Vašků J, Nečesánek I, Novák J, Vinklárek J, Zlámal F. “Stress entropic load” as a transgenerational epigenetic response trigger. Med. Hypotheses. 2014;82:271–274. doi: 10.1016/j.mehy.2013.12.008. PubMed DOI
Zlámal F, et al. Stress entropic load. PLoS ONE. 2018 doi: 10.1371/journal.pone.0205812. PubMed DOI PMC
Fiala D. Dynamic Simulation of Human Heat Transfer and Thermal Comfort. De Montfort University in Leicester; 1998.
Havenith G, Fiala D. Thermal indices and thermophysiological modeling for heat stress. Compr. Physiol. 2016;6:255–302. doi: 10.1002/cphy.c140051. PubMed DOI
Li B, Yang Y, Yao R, Liu H, Li Y. A simplified thermoregulation model of the human body in warm conditions. Appl. Ergon. 2017;59:387–400. doi: 10.1016/j.apergo.2016.09.010. PubMed DOI
Kuznetsov YA. Elements of Applied Bifurcation Theory. 2. Springer; 1998.
Deakin MAB. Applied catastrophe theory in the social and biological sciences. Bull. Math. Biol. 1980;42:647–679. doi: 10.1007/BF02460985. DOI
Stewart I. Catastrophe theory in physics. Rep. Progr. Phys. 1982;45:185–221. doi: 10.1088/0034-4885/45/2/002. DOI
Bienertová-Vašků, J. et al. Calculating stress. PLoS ONE (2016). 10.1371/journal.pone.0146667. PubMed PMC
Golubitsky M, Stewart I. Homeostasis, singularities, and networks. J. Math. Biol. 2017;74:387–407. doi: 10.1007/s00285-016-1024-2. PubMed DOI
Morrison PR. Temperature regulation in three central American mammals. J. Cell. Comp. Physiol. 1946;27:125–137. doi: 10.1002/jcp.1030270302. PubMed DOI
Dhooge A, Govaerts W, Kuznetsov YA. Matcont: A matlab package for numerical bifurcation analysis of odes. ACM Trans. Math. Softw. 2003;29:141–164. doi: 10.1145/779359.779362. DOI
Dhooge A, Govaerts W, Kuznetsov YA, Meijer HG, Sautois B. New features of the software matcont for bifurcation analysis of dynamical systems. Math. Comput. Modell. Dyn. Syst. 2008;14:147–175. doi: 10.1080/13873950701742754. DOI
Maplesoft, a division of Waterloo Maple Inc, Waterloo, Ontario, United States. Maple 18 (2018).