Unveiling the Mechanisms Ruling the Efficient Hydrogen Evolution Reaction with Mitrofanovite Pt3Te4

. 2021 Sep 09 ; 12 (35) : 8627-8636. [epub] 20210902

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34472339

By means of electrocatalytic tests, surface-science techniques and density functional theory, we unveil the physicochemical mechanisms ruling the electrocatalytic activity of recently discovered mitrofanovite (Pt3Te4) mineral. Mitrofanovite represents a very promising electrocatalyst candidate for energy-related applications, with a reduction of costs by 47% compared to pure Pt and superior robustness to CO poisoning. We show that Pt3Te4 is a weak topological metal with the Z2 invariant, exhibiting electrical conductivity (∼4 × 106 S/m) comparable with pure Pt. In hydrogen evolution reaction (HER), the electrode based on bulk Pt3Te4 shows a very small overpotential of 46 mV at 10 mA cm-2 and a Tafel slope of 36-49 mV dec-1 associated with the Volmer-Heyrovsky mechanism. The outstanding ambient stability of Pt3Te4 also provides durability of the electrode and long-term stability of its efficient catalytic performances.

Zobrazit více v PubMed

Ran N.; Sun B.; Qiu W.; Song E.; Chen T.; Liu J. Identifying Metallic Transition-Metal Dichalcogenides for Hydrogen Evolution through Multilevel High-Throughput Calculations and Machine Learning. J. Phys. Chem. Lett. 2021, 12, 2102–2111. 10.1021/acs.jpclett.0c03839. PubMed DOI

Wang M.; Ma W.; Lv Z.; Liu D.; Jian K.; Dang J. Co-Doped Ni3N Nanosheets with Electron Redistribution as Bifunctional Electrocatalysts for Efficient Water Splitting. J. Phys. Chem. Lett. 2021, 12, 1581–1587. 10.1021/acs.jpclett.0c03804. PubMed DOI

Wu F.; Zhan S.; Yang L.; Zhuo Z.; Wang X.; Li X.; Luo Y.; Jiang J. Spatial Confinement of a Carbon Nanocone for an Efficient Oxygen Evolution Reaction. J. Phys. Chem. Lett. 2021, 12, 2252–2258. 10.1021/acs.jpclett.1c00267. PubMed DOI

Yu T.; Wang C.; Yan X.; Yang G.; Schwingenschlogl U. Anisotropic Janus SiP2 Monolayer as a Photocatalyst for Water Splitting. J. Phys. Chem. Lett. 2021, 12, 2464–2470. 10.1021/acs.jpclett.0c03841. PubMed DOI PMC

Zhang H.; Zhang M.; Jia Y.; Geng L.; Yin B.; Li S.; Luo Z.; Pan F. Vanadium Cluster Neutrals Reacting with Water: Superatomic Features and Hydrogen Evolution in a Fishing Mode. J. Phys. Chem. Lett. 2021, 12, 1593–1600. 10.1021/acs.jpclett.0c03809. PubMed DOI

Cheng N.; Stambula S.; Wang D.; Banis M. N.; Liu J.; Riese A.; Xiao B.; Li R.; Sham T.-K.; Liu L.-M.; et al. Platinum Single-Atom and Cluster Catalysis of the Hydrogen Evolution Reaction. Nat. Commun. 2016, 7, 1–9. 10.1038/ncomms13638. PubMed DOI PMC

Haynes W. M., Abundance of Elements in the Earth’s Crust and in the Sea. In CRC handbook of chemistry and physics; Taylor & Francis: 2014; pp 14–18.

He J.; Shen Y.; Yang M.; Zhang H.; Deng Q.; Ding Y. The Effect of Surface Strain on the CO-Poisoned Surface of Pt Electrode for Hydrogen Adsorption. J. Catal. 2017, 350, 212–217. 10.1016/j.jcat.2017.04.004. DOI

Chen Q.-S.; Berna A.; Climent V.; Sun S.-G.; Feliu J. M. Specific Reactivity of Step Sites Towards CO Adsorption and Oxidation on Platinum Single Crystals Vicinal to Pt (111). Phys. Chem. Chem. Phys. 2010, 12, 11407–11416. 10.1039/c0cp00108b. PubMed DOI

Rosli N. F.; Mayorga-Martinez C. C.; Latiff N. M.; Rohaizad N.; Sofer Z.; Fisher A. C.; Pumera M. Layered PtTe2 Matches Electrocatalytic Performance of Pt/C for Oxygen Reduction Reaction with Significantly Lower Toxicity. ACS Sustainable Chem. Eng. 2018, 6, 7432–7441. 10.1021/acssuschemeng.7b04920. DOI

Schwämmlein J. N.; Stühmeier B. M.; Wagenbauer K.; Dietz H.; Tileli V.; Gasteiger H. A.; El-Sayed H. A. Origin of Superior Hor/Her Activity of Bimetallic Pt-Ru Catalysts in Alkaline Media Identified Via Ru@ Pt Core-Shell Nanoparticles. J. Electrochem. Soc. 2018, 165, H229.10.1149/2.0791805jes. DOI

Kobayashi D.; Kobayashi H.; Wu D.; Okazoe S.; Kusada K.; Yamamoto T.; Toriyama T.; Matsumura S.; Kawaguchi S.; Kubota Y.; et al. Significant Enhancement of Hydrogen Evolution Reaction Activity by Negatively Charged Pt through Light Doping of W. J. Am. Chem. Soc. 2020, 142, 17250–17254. 10.1021/jacs.0c07143. PubMed DOI

Chia X.; Adriano A.; Lazar P.; Sofer Z.; Luxa J.; Pumera M. Layered Platinum Dichalcogenides (PtS2, PtSe2, and PtTe2) Electrocatalysis: Monotonic Dependence on the Chalcogen Size. Adv. Funct. Mater. 2016, 26, 4306–4318. 10.1002/adfm.201505402. DOI

Petroni E.; Lago E.; Bellani S.; Boukhvalov D. W.; Politano A.; Gürbulak B.; Duman S.; Prato M.; Gentiluomo S.; Oropesa-Nuñez R.; Panda J. K.; Toth P. S.; Del Rio Castillo A. E.; Pellegrini V.; Bonaccorso F. Liquid-Phase Exfoliated Indium–Selenide Flakes and Their Application in Hydrogen Evolution Reaction. Small 2018, 14, 1800749.10.1002/smll.201800749. PubMed DOI

Song F.; Hu X. Exfoliation of Layered Double Hydroxides for Enhanced Oxygen Evolution Catalysis. Nat. Commun. 2014, 5, 1–9. 10.1038/ncomms5477. PubMed DOI

Anemone G.; Garnica M.; Zappia M.; Aguilar P. C.; Al Taleb A.; Kuo C. N.; Lue C. S.; Politano A.; Benedek G.; de Parga A. L. V.; Miranda R.; Farias D. Experimental Determination of Surface Thermal Expansion and Electron-Phonon Coupling Constant of 1t-PtTe2. 2D Mater. 2020, 7, 025007.10.1088/2053-1583/ab6268. DOI

Krivovichev V. G.; Krivovichev S. V.; Charykova M. V. Tellurium Minerals: Structural and Chemical Diversity and Complexity. Minerals 2020, 10, 623.10.3390/min10070623. DOI

Missen O. P.; Ram R.; Mills S. J.; Etschmann B.; Reith F.; Shuster J.; Smith D. J.; Brugger J. Love Is in the Earth: A Review of Tellurium (Bio)Geochemistry in Surface Environments. Earth-Sci. Rev. 2020, 204, 103150.10.1016/j.earscirev.2020.103150. DOI

Chia X.; Sofer Z.; Luxa J.; Pumera M. Layered Noble Metal Dichalcogenides: Tailoring Electrochemical and Catalytic Properties. ACS Appl. Mater. Interfaces 2017, 9, 25587–25599. 10.1021/acsami.7b05083. PubMed DOI

Lei B.; Zhang Y.-Y.; Du S.-X. Prediction of Structured Void-Containing 1T-PtTe2Monolayer with Potential Catalytic Activity for Hydrogen Evolution Reaction. Chin. Phys. B 2020, 29, 058104.10.1088/1674-1056/ab8203. DOI

Hu X.; Wong K. P.; Zeng L.; Guo X.; Liu T.; Zhang L.; Chen Q.; Zhang X.; Zhu Y.; Fung K. H.; et al. Infrared Nano-Imaging of Surface Plasmons in Type-II Dirac Semimetal PtTe2 Nanoribbons. ACS Nano 2020, 14, 6276–6284. 10.1021/acsnano.0c02466. PubMed DOI

Zhang K.; Yan M.; Zhang H.; Huang H.; Arita M.; Sun Z.; Duan W.; Wu Y.; Zhou S. Experimental Evidence for Type-II Dirac Semimetal in PtSe2. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 96, 125102.10.1103/PhysRevB.96.125102. DOI

Xu H.; Huang H.-P.; Fei H.; Feng J.; Fuh H.-R.; Cho J.; Choi M.; Chen Y.; Zhang L.; Chen D.; et al. Strategy for Fabricating Wafer-Scale Platinum Disulfide. ACS Appl. Mater. Interfaces 2019, 11, 8202–8209. 10.1021/acsami.8b19218. PubMed DOI

Krukowski S.; Kempisty P.; Strąk P. Fermi Level Influence on the Adsorption at Semiconductor Surfaces—Ab Initio Simulations. J. Appl. Phys. 2013, 114, 063507.10.1063/1.4817903. DOI

Nilsson A.; Pettersson L. G. M.; Hammer B.; Bligaard T.; Christensen C. H.; Nørskov J. K. The Electronic Structure Effect in Heterogeneous Catalysis. Catal. Lett. 2005, 100, 111–114. 10.1007/s10562-004-3434-9. DOI

Santos E.; Schmickler W. D-Band Catalysis in Electrochemistry. ChemPhysChem 2006, 7, 2282–2285. 10.1002/cphc.200600441. PubMed DOI

Subbotin V. V.; Vymazalová A.; Laufek F.; Savchenko Y. E.; Stanley C. J.; Gabov D. A.; Plášil J. Mitrofanovite, Pt3Te4, a New Mineral from the East Chuarvy Deposit, Fedorovo-Pana Intrusion, Kola Peninsula, Russia. Mineral. Mag. 2019, 83, 523–530. 10.1180/mgm.2018.150. DOI

Bae D.; Park K.; Kwon H.; Won D.; Ling N.; Baik H.; Yang J.; Park H. J.; Cho J.; Yang H.; et al. Mitrofanovite, Layered Platinum Telluride, for Active Hydrogen Evolution. ACS Appl. Mater. Interfaces 2021, 13, 2437–2446. 10.1021/acsami.0c16098. PubMed DOI

Tong X.-W.; Lin Y.-N.; Huang R.; Zhang Z.-X.; Fu C.; Wu D.; Luo L.-B.; Li Z.-J.; Liang F.-X.; Zhang W. Direct Tellurization of Pt to Synthesize 2D PtTe2 for High-Performance Broadband Photodetectors and NIR Image Sensors. ACS Appl. Mater. Interfaces 2020, 12, 53921–53931. 10.1021/acsami.0c14996. PubMed DOI

Guo C.; Huang L.; Li C.; Shang S.; Du Z. Thermodynamic Modeling of the Pt-Te and Pt-Sb-Te Systems. J. Electron. Mater. 2015, 44, 2638–2650. 10.1007/s11664-015-3676-x. DOI

White G. K.Experimental Techniques in Low-Temperature Physics; 1987.

Walton J.; Alexander M.; Fairley N.; Roach P.; Shard A. Film Thickness Measurement and Contamination Layer Correction for Quantitative XPS. Surf. Interface Anal. 2016, 48, 164–172. 10.1002/sia.5934. DOI

Alexander M. R.; Thompson G. E.; Zhou X.; Beamson G.; Fairley N. Quantification of Oxide Film Thickness at the Surface of Aluminium Using XPS. Surf. Interface Anal. 2002, 34, 485–489. 10.1002/sia.1344. DOI

Sciortino L.; Lo Cicero U.; Magnano E.; Píš I.; Barbera M. Surface Investigation and Aluminum Oxide Estimation on Test Filters for the Athena X-Ifu and Wfi Detectors. Proc. SPIE 2016, 9905, 990566.10.1117/12.2232376. DOI

Wiercigroch E.; Szafraniec E.; Czamara K.; Pacia M. Z.; Majzner K.; Kochan K.; Kaczor A.; Baranska M.; Malek K. Raman and Infrared Spectroscopy of Carbohydrates: A Review. Spectrochim. Acta, Part A 2017, 185, 317–335. 10.1016/j.saa.2017.05.045. PubMed DOI

Steininger H.; Ibach H.; Lehwald S. Surface Reactions of Ethylene and Oxygen on Pt(111). Surf. Sci. 1982, 117, 685–698. 10.1016/0039-6028(82)90549-0. DOI

Nevins N.; Allinger N. L. Molecular Mechanics (Mm4) Vibrational Frequency Calculations for Alkenes and Conjugated Hydrocarbons. J. Comput. Chem. 1996, 17, 730–746. 10.1002/(SICI)1096-987X(199604)17:5/6<730::AID-JCC9>3.0.CO;2-V. DOI

Li Z.; Wang Y.; Kozbial A.; Shenoy G.; Zhou F.; McGinley R.; Ireland P.; Morganstein B.; Kunkel A.; Surwade S. P.; Li L.; Liu H. Effect of Airborne Contaminants on the Wettability of Supported Graphene and Graphite. Nat. Mater. 2013, 12, 925–931. 10.1038/nmat3709. PubMed DOI

Politano A.; Chiarello G. Vibrational Investigation of Catalyst Surfaces: Change of the Adsorption Site of CO Molecules Upon Coadsorption. J. Phys. Chem. C 2011, 115, 13541–13553. 10.1021/jp202212a. DOI

Dey S.; Jain V. K. Platinum Group Metal Chalcogenides. Platinum Metals Review 2004, 48, 16–28.

Vorokhta M.; Khalakhan I.; Vondráček M.; Tomeček D.; Vorokhta M.; Marešová E.; Nováková J.; Vlček J.; Fitl P.; Novotný M.; Hozák P.; Lančok J.; Vrňata M.; Matolínová I.; Matolín V. Investigation of Gas Sensing Mechanism of SnO2 Based Chemiresistor Using near Ambient Pressure XPS. Surf. Sci. 2018, 677, 284–290. 10.1016/j.susc.2018.08.003. DOI

Giannozzi P.; Baroni S.; Bonini N.; Calandra M.; Car R.; Cavazzoni C.; Ceresoli D.; Chiarotti G. L.; Cococcioni M.; Dabo I.; Dal Corso A.; de Gironcoli S.; Fabris S.; Fratesi G.; Gebauer R.; Gerstmann U.; Gougoussis C.; Kokalj A.; Lazzeri M.; Martin-Samos L.; Marzari N.; Mauri F.; Mazzarello R.; Paolini S.; Pasquarello A.; Paulatto L.; Sbraccia C.; Scandolo S.; Sclauzero G.; Seitsonen A. P.; Smogunov A.; Umari P.; Wentzcovitch R. M. Quantum Espresso: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys.: Condens. Matter 2009, 21, 395502.10.1088/0953-8984/21/39/395502. PubMed DOI

Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI

Barone V.; Casarin M.; Forrer D.; Pavone M.; Sambi M.; Vittadini A. Role and Effective Treatment of Dispersive Forces in Materials: Polyethylene and Graphite Crystals as Test Cases. J. Comput. Chem. 2009, 30, 934–939. 10.1002/jcc.21112. PubMed DOI

Monkhorst H. J.; Pack J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. 10.1103/PhysRevB.13.5188. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...