• This record comes from PubMed

Seminal fluid and sperm diluent affect sperm metabolism in an insect: Evidence from NAD(P)H and flavin adenine dinucleotide autofluorescence lifetime imaging

. 2022 Jan ; 85 (1) : 398-411. [epub] 20210905

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
KR 1666/4-1 Deutsche Forschungsgemeinschaft
OT 521/4-1 Deutsche Forschungsgemeinschaft
18-08468J Grantová Agentura České Republiky

Sperm metabolism is fundamental to sperm motility and male fertility. Its measurement is still in its infancy, and recommendations do not exist as to whether or how to standardize laboratory procedures. Here, using the sperm of an insect, the common bedbug, Cimex lectularius, we demonstrate that standardization of sperm metabolism is required with respect to the artificial sperm storage medium and a natural medium, the seminal fluid. We used fluorescence lifetime imaging microscopy (FLIM) in combination with time-correlated single-photon counting (TCSPC) to quantify sperm metabolism based on the fluorescent properties of autofluorescent coenzymes, NAD(P)H and flavin adenine dinucleotide. Autofluorescence lifetimes (decay times) differ for the free and protein-bound state of the co-enzymes, and their relative contributions to the lifetime signal serve to characterize the metabolic state of cells. We found that artificial storage medium and seminal fluid separately, and additively, affected sperm metabolism. In a medium containing sugars and amino acids (Grace's Insect medium), sperm showed increased glycolysis compared with a commonly used storage medium, phosphate-buffered saline (PBS). Adding seminal fluid to the sperm additionally increased oxidative phosphorylation, likely reflecting increased energy production of sperm during activation. Our study provides a protocol to measure sperm metabolism independently from motility, stresses that protocol standardizations for sperm measurements should be implemented and, for the first time, demonstrates that seminal fluid alters sperm metabolism. Equivalent protocol standardizations should be imposed on metabolic investigations of human sperm samples.

See more in PubMed

Aitken, R. J., Jones, K. T., & Robertson, S. A. (2012). Reactive oxygen species and sperm function-In sickness and in health. Journal of Andrology, 33(6), 1096-1106. https://doi.org/10.2164/jandrol.112.016535

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01

Becker, W. (2012). Fluorescence lifetime imaging - Techniques and applications. Journal of Microscopy, 247(2), 119-136. https://doi.org/10.1111/j.1365-2818.2012.03618.x

Becker, W., Bergmann, A., Suarez Ibarrola, R., Müller, P.-F., & Braun, L. Z. (2019). Metabolic imaging by simultaneous FLIM of NAD(P)H and FAD. Proceedings of SPIE, 10882, 10. https://doi.org/10.1117/12.2510132

Bellinvia, S., Johnston, P. R., Reinhardt, K., & Otti, O. (2020). Bacterial communities of the reproductive organs of virgin and mated common bedbugs, Cimex lectularius. Ecological Entomology, 45(1), 142-154. https://doi.org/10.1111/een.12784

Bellinvia, S., Spachtholz, A., Borgwardt, I., Schauer, B., & Otti, O. (2020). Female immunity in response to sexually transmitted opportunistic bacteria in the common bedbug Cimex lectularius. Journal of Insect Physiology, 123, 104048. https://doi.org/10.1016/j.jinsphys.2020.104048

Blacker, T. S., & Duchen, M. R. (2016). Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radical Biology & Medicine, 100, 53-65. https://doi.org/10.1016/j.freeradbiomed.2016.08.010

Blacker, T. S., Mann, Z. F., Gale, J. E., Ziegler, M., Bain, A. J., Szabadkai, G., & Duchen, M. R. (2014). Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nature Communications, 5, 3936. https://doi.org/10.1038/ncomms4936

Cragg, F. W. (1920). Further observations on the reproductive system of Cimex, with special reference to the behaviour of the spermatozoa. Indian Journal of Medical Research, 8(1), 32-79.

Davis, N. T. (1964). Studies of the reproductive physiology of Cimicidae (Hemiptera)-I. Fecundation and egg maturation. Journal of Insect Physiology, 10, 947-963.

Davis, N. T. (1965). Studies of the reproductive physiology of Cimicidae (Hemiptera)-II. Artificial insemination and the function of the seminal fluid. Journal of Insect Physiology, 11, 355-366.

Den Boer, S. P. A., Baer, B., & Boomsma, J. J. (2010). Seminal fluid mediates ejaculate competition in social insects. Science, 327(5972), 1506-1509. https://doi.org/10.1126/science.1184709

Doggett, S. L., Miller, D. M., & Lee, C.-Y. (Eds.). (2018). Advances in the biology and management of modern bed bugs. Hoboken, NJ: Wiley-Blackwell.

Du Plessis, S. S., Agarwal, A., Mohanty, G., & van der Linde, M. (2015). Oxidative phosphorylation versus glycolysis: What fuel do spermatozoa use? Asian Journal of Andrology, 17(2), 230-235. https://doi.org/10.4103/1008-682X.135123

Eckel, B. A., Guo, R., & Reinhardt, K. (2017). More Pitfalls with Sperm Viability Staining and a Viability-Based Stress Test to Characterize Sperm Quality. Frontiers in Ecology and Evolution, 5, 599. https://doi.org/10.3389/fevo.2017.00165

Evers, M., Salma, N., Osseiran, S., Casper, M., Birngruber, R., Evans, C. L., & Manstein, D. (2018). Enhanced quantification of metabolic activity for individual adipocytes by label-free FLIM. Scientific Reports, 8(1), 1-14. https://doi.org/10.1038/s41598-018-27093-x

Ferlin, A. (2012). New genetic markers for male fertility. Asian Journal of Andrology, 14(6), 807-808. https://doi.org/10.1038/aja.2012.84

Ferreira, T., & Rasband, W. S. (2010-2012). ImageJ User Guide - IJ 1.46.

Geer, B. W., Kelley, K. R., Pohlman, T. H., & Yemm, S. J. (1975). A comparison of rat and Drosophila spermatozoan metabolisms. Comparative Biochemistry and Physiology B, 50(1), 41-50. https://doi.org/10.1016/0305-0491(75)90296-5

Glazener, C. M., Ford, W. C., & Hull, M. G. (2000). The prognostic power of the post-coital test for natural conception depends on duration of infertility. Human Reproduction (Oxford, England), 15(9), 1953-1957. https://doi.org/10.1093/humrep/15.9.1953

Holman, L. (2009). Drosophila melanogaster seminal fluid can protect the sperm of other males. Functional Ecology, 23(1), 180-186. https://doi.org/10.1111/j.1365-2435.2008.01509.x

Holman, L., & Snook, R. R. (2008). A sterile sperm caste protects brother fertile sperm from female-mediated death in Drosophila pseudoobscura. Current Biology, 18(4), 292-296. https://doi.org/10.1016/j.cub.2008.01.048

Islam, M. S., Honma, M., Nakabayashi, T., Kinjo, M., & Ohta, N. (2013). Ph dependence of the fluorescence lifetime of FAD in solution and in cells. International Journal of Molecular Sciences, 14(1), 1952-1963. https://doi.org/10.3390/ijms14011952

Islam, S. D., Susdorf, T., Penzkofer, A., & Hegemann, P. (2003). Fluorescence quenching of flavin adenine dinucleotide in aqueous solution by pH dependent isomerisation and photo-induced electron transfer. Chemical Physics, 295(2), 137-149. https://doi.org/10.1016/j.chemphys.2003.08.013

Kaldun, B., & Otti, O. (2016). Condition-dependent ejaculate production affects male mating behavior in the common bedbug Cimex lectularius. Ecology and Evolution, 6(8), 2548-2558. https://doi.org/10.1002/ece3.2073

Kamp, G., Büsselmann, G., & Lauterwein, J. (1996). Spermatozoa: Models for studying regulatory aspects of energy metabolism. Experientia, 52(5), 487-494.

Kolenc, O. I., & Quinn, K. P. (2019). Evaluating cell metabolism through autofluorescence imaging of NAD(P)H and FAD. Antioxidants & Redox Signaling, 30(6), 875-889. https://doi.org/10.1089/ars.2017.7451

König, K. (2020). Review: Clinical in vivo multiphoton FLIM tomography. Methods and Applications in Fluorescence, 8(3), 34002. https://doi.org/10.1088/2050-6120/ab8808

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1-26. https://doi.org/10.18637/jss.v082.i13

Lakowicz, J. R., Szmacinski, H., Nowaczyk, K., & Johnson, M. L. (1992). Fluorescence lifetime imaging of free and protein-bound NADH. Proceedings of the National Academy of Sciences of the United States of America, 89(4), 1271-1275. https://doi.org/10.1073/pnas.89.4.1271

Leben, R., Köhler, M., Radbruch, H., Hauser, A. E., & Niesner, R. A. (2019). Systematic enzyme mapping of cellular metabolism by phasor-analyzed label-free NAD(P)H fluorescence lifetime imaging. International Journal of Molecular Sciences, 20(22), 5565. https://doi.org/10.3390/ijms20225565

Magdanz, V., Boryshpolets, S., Ridzewski, C., Eckel, B., & Reinhardt, K. (2019). The motility-based swim-up technique separates bull sperm based on differences in metabolic rates and tail length. PLoS One, 14(10), e0223576. https://doi.org/10.1371/journal.pone.0223576

Mann, T., & Lutwak-Mann, C. (1981). Male reproductive function and semen: Themes and trends in physiology, biochemistry and investigative andrology. London, England: Springer London.

Meleshina, A. V., Dudenkova, V. V., Bystrova, A. S., Kuznetsova, D. S., Shirmanova, M. V., & Zagaynova, E. V. (2017). Two-photon FLIM of NAD(P)H and FAD in mesenchymal stem cells undergoing either osteogenic or chondrogenic differentiation. Stem Cell Research & Therapy, 8(1), 15. https://doi.org/10.1186/s13287-017-0484-7

Meleshina, A. V., Dudenkova, V. V., Shirmanova, M. V., Shcheslavskiy, V. I., Becker, W., Bystrova, A. S., … Zagaynova, E. V. (2016). Probing metabolic states of differentiating stem cells using two-photon FLIM. Scientific Reports, 6, 21853. https://doi.org/10.1038/srep21853

Ogikubo, S., Nakabayashi, T., Adachi, T., Islam, M. S., Yoshizawa, T., Kinjo, M., & Ohta, N. (2011). Intracellular pH sensing using autofluorescence lifetime microscopy. The Journal of Physical Chemistry B, 115(34), 10385-10390. https://doi.org/10.1021/jp2058904

Osanai, M., & Chen, P. S. (1993). A comparative study on the arginine degradation cascade for sperm maturation of Bombyx mori and Drosophila melanogaster. Amino Acids, 5(3), 341-350. https://doi.org/10.1007/BF00806952

Otti, O., Deines, P., Hammerschmidt, K., & Reinhardt, K. (2017). Regular wounding in a natural system: Bacteria associated with reproductive organs of bedbugs and their quorum sensing abilities. Frontiers in Immunology, 8, 1855. https://doi.org/10.3389/fimmu.2017.01855

Otti, O., McTighe, A. P., & Reinhardt, K. (2013). In vitro antimicrobial sperm protection by an ejaculate-like substance. Functional Ecology, 27(1), 219-226. https://doi.org/10.1111/1365-2435.12025

Paynter, E., Millar, A. H., Welch, M., Baer-Imhoof, B., Cao, D., & Baer, B. (2017). Insights into the molecular basis of long-term storage and survival of sperm in the honeybee (Apis mellifera). Scientific Reports, 7, 40236. https://doi.org/10.1038/srep40236

Poiani, A. (2006). Complexity of seminal fluid: A review. Behavioral Ecology and Sociobiology, 60(3), 289-310. https://doi.org/10.1007/s00265-006-0178-0

Quinn, K. P., Sridharan, G. V., Hayden, R. S., Kaplan, D. L., Lee, K., & Georgakoudi, I. (2013). Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation. Scientific Reports, 3, 3432. https://doi.org/10.1038/srep03432

Rao, H. V. (1974). Free amino acids in seminal fluid & haemolymph of Cimex lectularious L. & their possible role in sperm metabolism. Indian Journal of Experimental Biology, 12(4), 346-348.

Rao, H. V., & Davis, N. T. (1969). Sperm activation and migration in bed bugs. Journal of Insect Physiology, 15(10), 1815-1832. https://doi.org/10.1016/0022-1910(69)90014-6

Reinhardt, K., Wong, C. H., & Georgiou, A. S. (2009). Detection of seminal fluid proteins in the bed bug, Cimex lectularius, using two-dimensional gel electrophoresis and mass spectrometry. Parasitology, 136(3), 283-292. https://doi.org/10.1017/S0031182008005362

Reinhardt, K., Breunig, H. G., Uchugonova, A., & König, K. (2015). Sperm metabolism is altered during storage by female insects: Evidence from two-photon autofluorescence lifetime measurements in bedbugs. Journal of the Royal Society Interface, 12(110), 609. https://doi.org/10.1098/rsif.2015.0609

Reinhardt, K., Naylor, R., & Siva-Jothy, M. T. (2003). Reducing a cost of traumatic insemination: Female bedbugs evolve a unique organ. Proceedings of the Royal Society B, 270(1531), 2371-2375. https://doi.org/10.1098/rspb.2003.2515

Reinhardt, K., Naylor, R. A., & Siva-Jothy, M. T. (2009a). Ejaculate components delay reproductive senescence while elevating female reproductive rate in an insect. Proceedings of the National Academy of Sciences of the United States of America, 106(51), 21743-21747. https://doi.org/10.1073/pnas.0905347106

Reinhardt, K., Naylor, R. A., & Siva-Jothy, M. T. (2009b). Situation exploitation: Higher male mating success when female resistance is reduced by feeding. Evolution, 63(1), 29-39. https://doi.org/10.1111/j.1558-5646.2008.00502.x

Reinhardt, K., Naylor, R., & Siva-Jothy, M. T. (2011). Male mating rate is constrained by seminal fluid availability in bedbugs, Cimex lectularius. PLoS One, 6(7), e22082. https://doi.org/10.1371/journal.pone.0022082

Reinhardt, K., & Ribou, A.-C. (2013). Females become infertile as the stored sperm's oxygen radicals increase. Scientific Reports, 3(1), 115. https://doi.org/10.1038/srep02888

Reinhardt, K., & Siva-Jothy, M. T. (2007). Biology of the bed bugs (Cimicidae). Annual Review of Entomology, 52, 351-374. https://doi.org/10.1146/annurev.ento.52.040306.133913

Ribou, A.-C., & Reinhardt, K. (2012). Reduced metabolic rate and oxygen radicals production in stored insect sperm. Proceedings, 279(1736), 2196-2203. https://doi.org/10.1098/rspb.2011.2422

Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T., & Eliceiri, K. W. (2017). Imagej2: Imagej for the next generation of scientific image data. BMC Bioinformatics, 18(1), 529. https://doi.org/10.1186/s12859-017-1934-z

Ruknudin, A., & Veera Raghavan, V. (1988). Initiation, maintenance and energy metabolism of sperm motility in the bed bug, Cimex hemipterus. Journal of Insect Physiology, 34(2), 137-142. https://doi.org/10.1016/0022-1910(88)90166-7

Schaefer, P. M., Kalinina, S., Rueck, A., von Arnim, C. A. F., & von Einem, B. (2019). Nadh autofluorescence-A marker on its way to boost bioenergetic research. Cytometry Part A, 95(1), 34-46. https://doi.org/10.1002/cyto.a.23597

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. https://doi.org/10.1038/nmeth.2019

Scott, T. G., Spencer, R. D., Leonard, N. J., & Weber, G. (1970). Synthetic spectroscopic models related to coenzymes and base pairs. V. Emission properties of NADH. Studies of fluorescence lifetimes and quantum efficiencies of NADH, AcPyADH, [reduced acetylpyridineadenine dinucleotide] and simplified synthetic models. Journal of the American Chemical Society, 92(3), 687-695. https://doi.org/10.1021/ja00706a043

Huang, S., Heikal, A. A., & Webb, W. W. (2002). Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophysical Journal, 82, 2811-2825.

Sharick, J. T., Favreau, P. F., Gillette, A. A., Sdao, S. M., Merrins, M. J., & Skala, M. C. (2018). Protein-bound NAD(P)H lifetime is sensitive to multiple fates of glucose carbon. Scientific Reports, 8(1), 5456. https://doi.org/10.1038/s41598-018-23691-x

Skala, M. C., Riching, K. M., Bird, D. K., Gendron-Fitzpatrick, A., Eickhoff, J., Eliceiri, K. W., … Ramanujam, N. (2007). In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. Journal of Biomedical Optics, 12(2), 24014. https://doi.org/10.1117/1.2717503

Skala, M. C., Riching, K. M., Gendron-Fitzpatrick, A., Eickhoff, J., Eliceiri, K. W., White, J. G., & Ramanujam, N. (2007). In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19494-19499. https://doi.org/10.1073/pnas.0708425104

Storey, B. T. (2008). Mammalian sperm metabolism: Oxygen and sugar, friend and foe. The International Journal of Developmental Biology, 52(5-6), 427-437. https://doi.org/10.1387/ijdb.072522bs

Stringari, C., Cinquin, A., Cinquin, O., Digman, M. A., Donovan, P. J., & Gratton, E. (2011). Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proceedings of the National Academy of Sciences of the United States of America, 108(33), 13582-13587. https://doi.org/10.1073/pnas.1108161108

Stringari, C., Edwards, R. A., Pate, K. T., Waterman, M. L., Donovan, P. J., & Gratton, E. (2012). Metabolic trajectory of cellular differentiation in small intestine by phasor fluorescence lifetime microscopy of NADH. Scientific Reports, 2, 568. https://doi.org/10.1038/srep00568

Stringari, C., Nourse, J. L., Flanagan, L. A., & Gratton, E. (2012). Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential. PLoS One, 7(11), e48014. https://doi.org/10.1371/journal.pone.0048014

Symonds, M. R. E., & Moussalli, A. (2011). A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion. Behavioral Ecology and Sociobiology, 65(1), 13-21. https://doi.org/10.1007/s00265-010-1037-6

Tombes, R. M., & Shapiro, B. M. (1989). Energy transport and cell polarity: Relationship of phosphagen kinase activity to sperm function. The Journal of Experimental Zoology, 251(1), 82-90. https://doi.org/10.1002/jez.1402510110

Tourmente, M., Villar-Moya, P., Rial, E., & Roldan, E. R. S. (2015). Differences in ATP generation via glycolysis and oxidative phosphorylation and relationships with sperm motility in mouse species. The Journal of Biological Chemistry, 290(33), 20613-20626. https://doi.org/10.1074/jbc.M115.664813

Turnell, B. R., & Reinhardt, K. (2020). Metabolic rate and oxygen radical levels increase but radical generation rate decreases with male age in Drosophila melanogaster sperm. The Journals of Gerontology, 75(12), 2278-2285. https://doi.org/10.1093/gerona/glaa078

Venables, W. N., & Ripley, B. D. (2011). Modern applied statistics with S (4th ed.). Statistics and computing). London, England: Springer.

Wallrabe, H., Svindrych, Z., Alam, S. R., Siller, K. H., Wang, T., Kashatus, D., … Periasamy, A. (2018). Segmented cell analyses to measure redox states of autofluorescent NAD(P)H, FAD & Trp in cancer cells by FLIM. Scientific Reports, 8(1), 79. https://doi.org/10.1038/s41598-017-18634-x

Warburg, O. (1956). On the origin of cancer cells. Science (New York, N.Y.), 123(3191), 309-314.

Wathes, D. C., Abayasekara, D. R. E., & Aitken, R. J. (2007). Polyunsaturated fatty acids in male and female reproduction. Biology of Reproduction, 77(2), 190-201. https://doi.org/10.1095/biolreprod.107.060558

Weiner, H. S., Crosier, A. E., & Keefer, C. L. (2019). Analysis of metabolic flux in felid spermatozoa using metabolomics and 13C-based fluxomics. Biology of Reproduction, 100(5), 1261-1274. https://doi.org/10.1093/biolre/ioz010

Werner, M., & Simmons, L. W. (2008). Insect sperm motility. Biological Reviews of the Cambridge Philosophical Society, 83(2), 191-208. https://doi.org/10.1111/j.1469-185X.2008.00039.x

Wetzker, C., & Reinhardt, K. (2019). Distinct metabolic profiles in Drosophila sperm and somatic tissues revealed by two-photon NAD(P)H and FAD autofluorescence lifetime imaging. Scientific Reports, 9(1), 1-10. https://doi.org/10.1038/s41598-019-56067-w

Wickham, H. (2009). Ggplot2: Elegant graphics for data analysis. Use R. New York: Springer New York. https://doi.org/10.1007/978-0-387-98141-3

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., … Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686

World Health Organization. (2010). WHO laboratory manual for the examination and processing of human semen (5th ed.). Nonserial Publications). Geneva, Switzerland: World Health Organization.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...