Mycorrhizal status is a poor predictor of the distribution of herbaceous species along the gradient of soil nutrient availability in coastal and grassland habitats

. 2021 Oct ; 31 (5) : 577-587. [epub] 20210907

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, metaanalýza

Perzistentní odkaz   https://www.medvik.cz/link/pmid34490546

Grantová podpora
LTC18056 Ministerstvo Školství, Mládeže a Tělovýchovy
IGA_PrF_2020_020 Univerzita Palackého v Olomouci
N/A Rural and Environment Science and Analytical Services Division
LIFE16NAT/LV/000262 LIFE programme
GA 19-28491X Grantová Agentura České Republiky

Odkazy

PubMed 34490546
DOI 10.1007/s00572-021-01047-0
PII: 10.1007/s00572-021-01047-0
Knihovny.cz E-zdroje

Plant mycorrhizal status (a trait indicating the ability to form mycorrhizas) can be a useful plant trait for predicting changes in vegetation influenced by increased fertility. Mycorrhizal fungi enhance nutrient uptake and are expected to provide a competitive advantage for plants growing in nutrient-poor soils; while in nutrient-rich soils, mycorrhizal symbiosis may be disadvantageous. Some studies in natural systems have shown that mycorrhizal plants can be more frequent in P and N-poor soils (low nutrient availability) or Ca and Mg-high (high pH) soils, but empirical support is still not clear. Using vegetation and soil data from Scottish coastal habitats, and Latvian and Czech grasslands, we examined whether there is a link between plant mycorrhizal status and plant-available P, N, Ca and Mg. We performed the max test analysis (to examine the central tendency) and a combination of quantile regression and meta-analysis (to examine tendencies in different quantiles) on both community and plant species data combined with plant phylogenies. We consistently found no changes in mycorrhizal status at the community and species levels along the gradients of plant-available P, N, Ca and Mg in the central tendency and in almost all quantiles across all datasets. Thus, we found no support for the hypotheses that herbaceous species which are able to form mycorrhizas are more frequent in nutrient-poor and high pH environments. Obligatory, facultatively and non-mycorrhizal herbaceous species appear to assemble randomly along the gradients of nutrient availability in several European herbaceous habitats, suggesting that all these strategies perform similarly under non-extreme soil nutrient conditions.

Zobrazit více v PubMed

Abouheif E (1999) A method for testing the assumption of phylogenetic independence in comparative data. Evol Ecol Res 1:895–909

Albornoz FE, Dixon KW, Lambers H (2021) Revisiting mycorrhizal dogmas: are mycorrhizas really functioning as they are widely believed to do? Soil Ecol Lett 3:73–82. https://doi.org/10.1007/s42832-020-0070-2 DOI

AOAC (1984) Official methods of analysis. Arlington, VA: AOAC

Balduzzi S, Rücker G, Schwarzer G (2019) How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health 22:153–160. https://doi.org/10.1136/ebmental-2019-300117 DOI

Bergmann J, Weigelt A, van der Plas F, Laughlin DC, Kuyper TW, Guerrero-Ramirez N, Valverde- Barrantes OJ, Bruelheide H, Freschet GT, Iversen CM, Kattge J, McCormack ML, Meier IC, Rillig, MC, Roumet C, Semchenko M, Sweeney CJ, van Ruijven J, York LM, Mommer L (2020) The fungal collaboration gradient dominates the root economics space in plants. Sci Adv 6:eaba3756. https://doi.org/10.1126/sciadv.aba3756

Black CA (1965) Methods of soil analysis, part I and II. American Society of Agronomy Inc, Madison, WI DOI

Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x PubMed DOI

Brundrett MC (2017) Global diversity and importance of mycorrhizal and nonmycorrhizal plants. In: Tedersoo L. (ed) Biogeography of mycorrhizal symbiosis, Cham, Switzerland: Springer International, pp 361–394

Brundrett MC, Tedersoo L (2019) Misdiagnosis of mycorrhizas and inappropriate recycling of data can lead to false conclusions. New Phytol 221:18–24. https://doi.org/10.1111/nph.15440 PubMed DOI

Březina S, Jandová K, Pecháčková S, Hadincová V, Skálová H, Krahulec F, Herben T (2019) Nutrient patches are transient and unpredictable in an unproductive mountain grassland. Plant Ecol 220:111–123. https://doi.org/10.1007/s11258-019-00906-3 DOI

Bueno CG, Aldrich-Wolfe L, Chaudhary VB, Gerz M, Helgason T, Hoeksema JD, Klironomos J, Lekberg Y, Leon D, Maherali H, Öpik M, Zobel M, Moora M (2019a) Misdiagnosis and uncritical use of plant mycorrhizal data are not the only elephants in the room. New Phytol 224:1415–1418. https://doi.org/10.1111/nph.15976 PubMed DOI

Bueno GC, Moora M, Gerz M, Davison J, Öpik M, Pärtel M, Helm A, Ronk A, Kühn I, Zobel M (2017) Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe. Glob Ecol Biogeogr 26:690–699. https://doi.org/10.1111/geb.12582 DOI

Bueno CG, Gerz M, Moora M, Leon D, Gomez-Garcia D, de Leon DG, Font X, Al-Quraishy S, Hozzein WH, Zobel M (2021) Distribution of plant mycorrhizal traits along an elevational gradient does not fully mirror the latitudinal gradient. Mycorrhiza 31:149–159. https://doi.org/10.1007/s00572-020-01012-3 PubMed DOI

Bueno CG, Gerz M, Zobel M, Moora M (2019b) Conceptual differences lead to divergent trait estimates in empirical and taxonomic approaches to plant mycorrhizal trait assignment. Mycorrhiza 29:1–11. https://doi.org/10.1007/s00572-018-0869-1 DOI

Cade BS, Terrell JW, Schroeder RL (1999) Estimating effects of limiting factors with regression quantiles. Ecology 80:311–323. https://doi.org/10.1890/0012-9658(1999)080[0311:EEOLFW]2.0.CO;2 DOI

Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334 PubMed DOI

Delavaux CS, Smith-Ramesh LM, Kuebbing SE (2017) Beyond nutrients: a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology 98:2111–2119. https://doi.org/10.1002/ecy.1892 PubMed DOI

Drori M, Rice A, Einhorn M, Chay O, Glick L, Mayrose I (2018) OneTwoTree: an online tool for phylogeny reconstruction. Mol Ecol Resour 18:1492–1499. https://doi.org/10.1111/1755-0998.12927 PubMed DOI

Facelli E, Smith SE, Facelli JM, Christophersen HM, Smith FA (2010) Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition. New Phytol 185:1050–1061. https://doi.org/10.1111/j.1469-8137.2009.03162.x PubMed DOI

Francis R, Read DJ (1994) The contributions of mycorrhizal fungi to the determination of plant community structure. Plant Soil 159:11–25 DOI

Gerz M, Bueno CG, Zobel M, Moora M (2016) Plant community mycorrhization in temperate forests and grasslands: relations with edaphic properties and plant diversity. J Veg Sci 27:89–99. https://doi.org/10.1111/jvs.12338 DOI

Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties. Chichester, UK: J. Wiley

Harrer M, Cuijpers P, Furukawa TA, Ebert DD (2019) Doing meta-analysis in R: a hands-on guide. https://bookdown.org/MathiasHarrer/Doing_Meta_Analysis_in_R/

Hartung J, Knapp G (2001) On tests of the overall treatment effect in meta-analysis with normally distributed responses. Stat Med 20:1771–1782. https://doi.org/10.1002/sim.791 PubMed DOI

Hempel S, Götzenberger L, Kühn I, Michalski SG, Rillig MC, Zobel M, Moora M (2013) Mycorrhizas in the Central European flora: relationships with plant life history traits and ecology. Ecology 94:1389–1399. https://doi.org/10.1890/12-1700.1 PubMed DOI

Ho LST, Ané C (2014) A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst Biol 63:397–408. https://doi.org/10.1093/sysbio/syu005 PubMed DOI

IntHout J, Ioannidis JPA, Borm GF (2014) The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med Res Methodol 14:25. https://doi.org/10.1186/1471-2288-14-25 PubMed DOI PMC

Janos DP (1980) Mycorrhizae influence tropical succession. Biotropica 12:56–64 DOI

Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91. https://doi.org/10.1007/s00572-006-0094-1 PubMed DOI

Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647. https://doi.org/10.1111/j.1469-8137.2009.03110.x PubMed DOI

Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585 DOI

Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908. https://doi.org/10.1890/0012-9658(2003)084[1895:NEAMAA]2.0.CO;2 DOI

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010 PubMed DOI PMC

Keck F, Rimet F, Bouchez A, Franc A (2016) phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol Evol 6:2774–2780. https://doi.org/10.1002/ece3.2051 PubMed DOI PMC

Koenker R (2019) quantreg: quantile regression. R package version 5.54. https://CRAN.R-project.org/package=quantreg

Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46:33–50 DOI

Kumar S, Stecher G, Suleski M, Hedges SB (2017) TimeTree: A resource for timelines, TimeTrees, and divergence times. Mol Biol Evol 34:1812–1819. https://doi.org/10.1093/molbev/msx116 DOI

Lambers H, Albornoz F, Kotula L, Laliberté E, Ranathunge K, Teste FP, Zemunik G (2018) How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems. Plant Soil 424:11–33. https://doi.org/10.1007/s11104-017-3427-2 DOI

Lambers H, Teste FP (2013) Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient availability play the same game? Plant, Cell Environ 36:1911–1915. https://doi.org/10.1111/pce.12117 DOI

Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103. https://doi.org/10.1016/j.tree.2007.10.008 PubMed DOI

Laughlin DC, Strahan RT, Adler PB, Moore MM (2018) Survival rates indicate that correlations between community-weighted mean traits and environments can be unreliable estimates of the adaptive value of traits. Ecol Lett 21:411–421. https://doi.org/10.1111/ele.12914 PubMed DOI

Mehlich A (1984) Mehlich no 3 soil test extractant: A modification of Mehlich no 2 extractant. Commun Soil Sci Plant Anal 15:1409–1416 DOI

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. Proc Gateway Comput Environ Workshop (GCE): 1–8

Moora M (2014) Mycorrhizal traits and plant communities: perspectives for integration. J Veg Sci 25:1126–1132. https://doi.org/10.1111/jvs.12177 DOI

Moran PAP (1948) The interpretation of statistical maps. J R Stat Soc Series B Stat Methodol 10:243––251. https://doi.org/10.1111/j.2517-6161.1948.tb00012.x DOI

Ottaviani G, Molina-Venegas R, Charles-Dominique T, Chelli S, Campetella G, Canullo R, Klimešová J (2020) The neglected belowground dimension of plant dominance. Trends Ecol Evol 35:763–766. https://doi.org/10.1016/j.tree.2020.06.006 PubMed DOI

Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884 DOI

Pakeman RJ (2004) Consistency of plant species and trait responses to grazing along a productivity gradient: a multi-site analysis. J Ecol 92:893–905. https://doi.org/10.1111/j.0022-0477.2004.00928.x DOI

Pakeman RJ, Alexander J, Beaton J, Brooker R, Cummins R, Eastwood A, Fielding D, Fisher J, Gore S, Hewison R, Hooper R, Lennon J, Mitchell R, Moore E, Nolan A, Orford K, Pemberton C, Riach D, Sim D, Stockan J, Trinder C, Lewis R (2015) Species composition of coastal dune vegetation in Scotland has proved resistant to climate change over a third of a century. Glob Change Biol 21:3738–3747. https://doi.org/10.1111/gcb.12999 DOI

Pakeman RJ, Hewison RL, Lewis RJ (2017) Drivers of species richness and compositional change in Scottish coastal vegetation. Appl Veg Sci 20:183–193. https://doi.org/10.1111/avsc.12283 DOI

Parfitt RL (1979) The availability of P from phosphate-goethite bridging complexes. Desorption and uptake by ryegrass. Plant Soil 53:55–65 DOI

Parfitt RL, Yeates GW, Ross DJ, Mackay AD, Budding PJ (2005) Relationships between soil biota, nitrogen and phosphorus availability, and pasture growth under organic and conventional management. Appl Soil Ecol 28:1–13. https://doi.org/10.1016/j.apsoil.2004.07.001 DOI

Peat HJ, Fitter AH (1993) The distribution of arbuscular mycorrhizas in the British flora. New Phytol 125:845–854 DOI

Penn CJ, Camberato JJ (2019) A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 9:120. https://doi.org/10.3390/agriculture9060120 DOI

Peres-Neto PR, Dray S, ter Braak CJF (2017) Linking trait variation to the environment: critical issues with community-weighted mean correlation resolved by the fourth-corner approach. Ecography 40:806–816. https://doi.org/10.1111/ecog.02302 DOI

Pietri JC, Brookes PC (2008) Nitrogen mineralisation along a pH gradient of a silty loam UK soil. Soil Biol Biochem 40:797–802. https://doi.org/10.1016/j.soilbio.2007.10.014 DOI

R Core Team (2019) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.Rproject.org/

Rambaut A, Drummond AJ, Xie D, Baele D, Suchard MA (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904. https://doi.org/10.1093/sysbio/syy032 PubMed DOI PMC

Sidik K, Jonkman JN (2002) A simple confidence interval for meta-analysis. Stat Med 21:3153–3159. https://doi.org/10.1002/sim.1262 PubMed DOI

Sizonenko TA, Dubrovskiy YA, Novakovskiy AB (2020) Changes in mycorrhizal status and type in plant communities along altitudinal and ecological gradients — a case study from the Northern Urals (Russia). Mycorrhiza 30:445–454. https://doi.org/10.1007/s00572-020-00961-z PubMed DOI

Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London, UK

Smith SE, Smith AF (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250. https://doi.org/10.1146/annurev-arplant-042110-103846 PubMed DOI

Soudzilovskaia NA, Vaessen S, Barcelo M, He J, Rahimlou S, Abarenkov K, Brundrett MC, Gomes SIF, Merckx V, Tedersoo L (2020) FungalRoot: global online database of plant mycorrhizal associations. New Phytol 227:955–966. https://doi.org/10.1111/nph.16569 PubMed DOI

Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033 PubMed DOI PMC

Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol 4:vey016. https://doi.org/10.1093/ve/vey016

ter Braak CFJ, Peres-Neto PR, Dray S (2018) Simple parametric tests for trait–environment association. J Veg Sci 29:801–811. https://doi.org/10.1111/jvs.12666 DOI

Teste FP, Laliberté (2019) Plasticity in root symbioses following shifts in soil nutrient availability during long-term ecosystem development. J Ecol 107:633–649. https://doi.org/10.1111/1365-2745.13103 DOI

Zemunik G, Turner BL, Lambers H, Laliberté E (2015) Diversity of plant nutrient- acquisition strategies increases during long-term ecosystem development. Nature Plants 1:15050. https://doi.org/10.1038/NPLANTS.2015.50 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...