Nitroalkene fatty acids modulate bile acid metabolism and lung function in obese asthma
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
F32AI085633
NIH HHS - United States
R01 HL132550
NHLBI NIH HHS - United States
R01HL132550
NIH HHS - United States
T32 GM133332
NIGMS NIH HHS - United States
S10 OD023402
NIH HHS - United States
R01 HL146445
NHLBI NIH HHS - United States
R21AI122071
NIH HHS - United States
R01HL146445
NIH HHS - United States
F31HL142171
NIH HHS - United States
PubMed
34493738
PubMed Central
PMC8423735
DOI
10.1038/s41598-021-96471-9
PII: 10.1038/s41598-021-96471-9
Knihovny.cz E-zdroje
- MeSH
- antiastmatika terapeutické užití MeSH
- antigeny roztočů domácího prachu toxicita MeSH
- bronchiální astma farmakoterapie etiologie metabolismus patofyziologie MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- dospělí MeSH
- dusíkaté sloučeniny terapeutické užití MeSH
- hubenost MeSH
- játra účinky léků metabolismus MeSH
- kyselina glykocholová krev MeSH
- kyselina ursodeoxycholová analogy a deriváty krev MeSH
- kyseliny olejové terapeutické užití MeSH
- lidé středního věku MeSH
- lidé MeSH
- mastné kyseliny chemie fyziologie MeSH
- mladiství MeSH
- mladý dospělý MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- obezita komplikace metabolismus patofyziologie MeSH
- plíce patofyziologie MeSH
- preklinické hodnocení léčiv MeSH
- respirační alergie chemicky indukované farmakoterapie metabolismus MeSH
- usilovný výdechový objem MeSH
- vitální kapacita MeSH
- žlučové kyseliny a soli metabolismus MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- antiastmatika MeSH
- antigeny roztočů domácího prachu MeSH
- CXA-10 MeSH Prohlížeč
- dusíkaté sloučeniny MeSH
- glycoursodeoxycholic acid MeSH Prohlížeč
- kyselina glykocholová MeSH
- kyselina ursodeoxycholová MeSH
- kyseliny olejové MeSH
- mastné kyseliny MeSH
- žlučové kyseliny a soli MeSH
Bile acid profiles are altered in obese individuals with asthma. Thus, we sought to better understand how obesity-related systemic changes contribute to lung pathophysiology. We also test the therapeutic potential of nitro-oleic acid (NO2-OA), a regulator of metabolic and inflammatory signaling pathways, to mitigate allergen and obesity-induced lung function decline in a murine model of asthma. Bile acids were measured in the plasma of healthy subjects and individuals with asthma and serum and lung tissue of mice with and without allergic airway disease (AAD). Lung function, indices of inflammation and hepatic bile acid enzyme expression were measured in obese mice with house dust mite-induced AAD treated with vehicle or NO2-OA. Serum levels of glycocholic acid and glycoursodeoxycholic acid clinically correlate with body mass index and airway hyperreactivity whereas murine levels of β-muricholic acid and tauro-β-muricholic acid were significantly increased and positively correlated with impaired lung function in obese mice with AAD. NO2-OA reduced murine bile acid levels by modulating hepatic expression of bile acid synthesis enzymes, with a concomitant reduction in small airway resistance and tissue elastance. Bile acids correlate to body mass index and lung function decline and the signaling actions of nitroalkenes can limit AAD by modulating bile acid metabolism, revealing a potential pharmacologic approach to improving the current standard of care.
Department of Clinical and Translational Science University of Pittsburgh Pittsburgh PA 15261 USA
Department of Pathology School of Medicine University of Pittsburgh Pittsburgh PA 15261 USA
Health Sciences Metabolomics and Lipidomics Core University of Pittsburgh Pittsburgh PA 15261 USA
Zobrazit více v PubMed
Dixon AE, Holguin F. Diet and metabolism in the evolution of asthma and obesity. Clin. Chest Med. 2019;40:97–106. doi: 10.1016/j.ccm.2018.10.007. PubMed DOI PMC
Holguin F, et al. Obesity and asthma: An association modified by age of asthma onset. J. Allergy Clin. Immunol. 2011;127:1486–14931482. doi: 10.1016/j.jaci.2011.03.036. PubMed DOI PMC
Dixon AE, Poynter ME. Mechanisms of asthma in obesity: Pleiotropic aspects of obesity produce distinct asthma phenotypes. Am. J. Respir. Cell. Mol. Biol. 2016;54:601–608. doi: 10.1165/rcmb.2016-0017PS. PubMed DOI PMC
Schatz M, et al. Phenotypes determined by cluster analysis in severe or difficult-to-treat asthma. J. Allergy Clin. Immunol. 2014;133:1549–1556. doi: 10.1016/j.jaci.2013.10.006. PubMed DOI
Shore SA, Cho Y. Obesity and asthma: Microbiome-metabolome interactions. Am. J. Respir. Cell Mol. Biol. 2016;54:609–617. doi: 10.1165/rcmb.2016-0052PS. PubMed DOI PMC
Lee-Sarwar KA, Lasky-Su J, Kelly RS, Litonjua AA, Weiss ST. Metabolome-microbiome crosstalk and human disease. Metabolites. 2020 doi: 10.3390/metabo10050181. PubMed DOI PMC
Shin DJ, Wang L. Bile acid-activated receptors: A review on FXR and other nuclear receptors. Handb. Exp. Pharmacol. 2019;256:51–72. doi: 10.1007/164_2019_236. PubMed DOI
Keitel V, Stindt J, Haussinger D. Bile acid-activated receptors: GPBAR1 (TGR5) and other G protein-coupled receptors. Handb. Exp. Pharmacol. 2019;256:19–49. doi: 10.1007/164_2019_230. PubMed DOI
Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J. Hepatol. 2011;54:1263–1272. doi: 10.1016/j.jhep.2010.12.004. PubMed DOI PMC
Claudel T, Staels B, Kuipers F. The Farnesoid X receptor: A molecular link between bile acid and lipid and glucose metabolism. Arterioscler. Thromb. Vasc. Biol. 2005;25:2020–2030. doi: 10.1161/01.ATV.0000178994.21828.a7. PubMed DOI
Zhang Y, Edwards PA. FXR signaling in metabolic disease. FEBS Lett. 2008;582:10–18. doi: 10.1016/j.febslet.2007.11.015. PubMed DOI
Sayin SI, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013;17:225–235. doi: 10.1016/j.cmet.2013.01.003. PubMed DOI
Wahlstrom A, Sayin SI, Marschall HU, Backhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24:41–50. doi: 10.1016/j.cmet.2016.05.005. PubMed DOI
Inagaki T, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005;2:217–225. doi: 10.1016/j.cmet.2005.09.001. PubMed DOI
Crestani E, et al. Untargeted metabolomic profiling identifies disease-specific signatures in food allergy and asthma. J. Allergy Clin. Immunol. 2020;145:897–906. doi: 10.1016/j.jaci.2019.10.014. PubMed DOI PMC
Comhair SA, et al. Metabolomic endotype of asthma. J. Immunol. 2015;195:643–650. doi: 10.4049/jimmunol.1500736. PubMed DOI PMC
Kelley EE, et al. Fatty acid nitroalkenes ameliorate glucose intolerance and pulmonary hypertension in high-fat diet-induced obesity. Cardiovasc. Res. 2014;101:352–363. doi: 10.1093/cvr/cvt341. PubMed DOI PMC
Khoo NKH, et al. Electrophilic nitro-oleic acid reverses obesity-induced hepatic steatosis. Redox Biol. 2019;22:101132. doi: 10.1016/j.redox.2019.101132. PubMed DOI PMC
Rom O, et al. Nitro-fatty acids protect against steatosis and fibrosis during development of nonalcoholic fatty liver disease in mice. EBioMedicine. 2019;41:62–72. doi: 10.1016/j.ebiom.2019.02.019. PubMed DOI PMC
Cui T, et al. Nitrated fatty acids: Endogenous anti-inflammatory signaling mediators. J. Biol. Chem. 2006;281:35686–35698. doi: 10.1074/jbc.M603357200. PubMed DOI PMC
Ray A, Camiolo M, Fitzpatrick A, Gauthier M, Wenzel SE. Are we meeting the promise of endotypes and precision medicine in asthma? Physiol. Rev. 2020;100:983–1017. doi: 10.1152/physrev.00023.2019. PubMed DOI PMC
Fiorucci S, Biagioli M, Zampella A, Distrutti E. Bile acids activated receptors regulate innate immunity. Front. Immunol. 2018;9:1853. doi: 10.3389/fimmu.2018.01853. PubMed DOI PMC
Chiang JY. Bile acids: Regulation of synthesis. J. Lipid Res. 2009;50:1955–1966. doi: 10.1194/jlr.R900010-JLR200. PubMed DOI PMC
Takahashi S, et al. Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans. J. Lipid Res. 2016;57:2130–2137. doi: 10.1194/jlr.M071183. PubMed DOI PMC
Joyce SA, et al. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc. Natl. Acad. Sci. U S A. 2014;111:7421–7426. doi: 10.1073/pnas.1323599111. PubMed DOI PMC
Islam KB, et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology. 2011;141:1773–1781. doi: 10.1053/j.gastro.2011.07.046. PubMed DOI
Swann JR, et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc. Natl. Acad. Sci. U S A. 2011;108(Suppl 1):4523–4530. doi: 10.1073/pnas.1006734107. PubMed DOI PMC
Zhang Y, et al. Maternal bile acid transporter deficiency promotes neonatal demise. Nat. Commun. 2015;6:8186. doi: 10.1038/ncomms9186. PubMed DOI PMC
Zhao C, et al. Effects of bile acids and the bile acid receptor FXR agonist on the respiratory rhythm in the in vitro brainstem medulla slice of neonatal Sprague-Dawley rats. PLoS ONE. 2014;9:e112212. doi: 10.1371/journal.pone.0112212. PubMed DOI PMC
Chen B, et al. Bile acids induce activation of alveolar epithelial cells and lung fibroblasts through farnesoid X receptor-dependent and independent pathways. Respirology. 2016;21:1075–1080. doi: 10.1111/resp.12815. PubMed DOI
Shaik FB, Panati K, Narasimha VR, Narala VR. Chenodeoxycholic acid attenuates ovalbumin-induced airway inflammation in murine model of asthma by inhibiting the T(H)2 cytokines. Biochem. Biophys. Res. Commun. 2015;463:600–605. doi: 10.1016/j.bbrc.2015.05.104. PubMed DOI
Nakada EM, et al. Conjugated bile acids attenuate allergen-induced airway inflammation and hyperresponsiveness by inhibiting UPR transducers. JCI Insight. 2019 doi: 10.1172/jci.insight.98101. PubMed DOI PMC
Woodcock CC, et al. Nitro-fatty acid inhibition of triple-negative breast cancer cell viability, migration, invasion, and tumor growth. J. Biol. Chem. 2018;293:1120–1137. doi: 10.1074/jbc.M117.814368. PubMed DOI PMC
Villacorta L, et al. Electrophilic nitro-fatty acids inhibit vascular inflammation by disrupting LPS-dependent TLR4 signalling in lipid rafts. Cardiovasc. Res. 2013;98:116–124. doi: 10.1093/cvr/cvt002. PubMed DOI PMC
Verescakova H, et al. Nitro-oleic acid regulates growth factor-induced differentiation of bone marrow-derived macrophages. Free Radical Biol. Med. 2017;104:10–19. doi: 10.1016/j.freeradbiomed.2017.01.003. PubMed DOI PMC
Ambrozova G, et al. Nitro-oleic acid modulates classical and regulatory activation of macrophages and their involvement in pro-fibrotic responses. Free Radic. Biol. Med. 2016;90:252–260. doi: 10.1016/j.freeradbiomed.2015.11.026. PubMed DOI PMC
Kansanen E, et al. Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism. J. Biol. Chem. 2012;286:14019–14027. doi: 10.1074/jbc.M110.190710. PubMed DOI PMC
Wright MM, et al. Fatty acid transduction of nitric oxide signaling: nitrolinoleic acid potently activates endothelial heme oxygenase 1 expression. Proc. Natl. Acad. Sci. U.S.A. 2006;103:4299–4304. doi: 10.1073/pnas.0506541103. PubMed DOI PMC
Rudolph TK, et al. Nitrated fatty acids suppress angiotensin II-mediated fibrotic remodelling and atrial fibrillation. Cardiovasc. Res. 2016;109:174–184. doi: 10.1093/cvr/cvv254. PubMed DOI PMC
Su W, Wang H, Feng Z, Sun J. Nitro-oleic acid inhibits the high glucose-induced epithelial-mesenchymal transition in peritoneal mesothelial cells and attenuates peritoneal fibrosis. Am. J. Physiol. Renal Physiol. 2020;318:F457–F467. doi: 10.1152/ajprenal.00425.2019. PubMed DOI
Moore WC, et al. Safety of investigative bronchoscopy in the Severe Asthma Research Program. J. Allergy Clin. Immunol. 2011;128:328–336e323. doi: 10.1016/j.jaci.2011.02.042. PubMed DOI PMC
Fajt ML, et al. Prostaglandin D(2) pathway upregulation: Relation to asthma severity, control, and TH2 inflammation. J. Allergy Clin. Immunol. 2013;131:1504–1512. doi: 10.1016/j.jaci.2013.01.035. PubMed DOI PMC
Manni ML, et al. Bromodomain and extra-terminal protein inhibition attenuates neutrophil-dominant allergic airway disease. Sci. Rep. 2017;7:43139. doi: 10.1038/srep43139. PubMed DOI PMC
Manni ML, et al. The complex relationship between inflammation and lung function in severe asthma. Mucosal Immunol. 2014;7:1186–1198. doi: 10.1038/mi.2014.8. PubMed DOI PMC
Manni ML, et al. Molecular mechanisms of airway hyperresponsiveness in a murine model of steroid-resistant airway inflammation. J. Immunol. 2016;196:963–977. doi: 10.4049/jimmunol.1501531. PubMed DOI PMC
Hantos Z, Daroczy B, Suki B, Nagy S, Fredberg JJ. Input impedance and peripheral inhomogeneity of dog lungs. J. Appl. Physiol. 1992;1985(72):168–178. doi: 10.1152/jappl.1992.72.1.168. PubMed DOI
Bates JH, Irvin CG. Measuring lung function in mice: The phenotyping uncertainty principle. J. Appl. Physiol. 2003;1985(94):1297–1306. doi: 10.1152/japplphysiol.00706.2002. PubMed DOI
Alnouti Y, Csanaky IL, Klaassen CD. Quantitative-profiling of bile acids and their conjugates in mouse liver, bile, plasma, and urine using LC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008;873:209–217. doi: 10.1016/j.jchromb.2008.08.018. PubMed DOI PMC
McClanahan D, et al. Pilot study of the effect of plant-based enteral nutrition on the gut microbiota in chronically ill tube-fed children. JPEN J. Parenter. Enteral Nutr. 2019;43:899–911. doi: 10.1002/jpen.1504. PubMed DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI