Lewis Superacidic Tellurenyl Cation-Induced Electrophilic Activation of an Inert Carborane

. 2021 Oct 21 ; 27 (59) : 14577-14581. [epub] 20210928

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34495561

Grantová podpora
deutsche forschungsgemeinschaft

The aryltellurenyl cation [2-(tBuNCH)C6 H4 Te]+ , a Lewis super acid, and the weakly coordinating carborane anion [CB11 H12 ]- , an extremely weak Brønsted acid (pKa =131.0 in MeCN), form an isolable ion pair complex [2-(tBuNCH)C6 H4 Te][CB11 H12 ], in which the Brønsted acidity (pKa 7.4 in MeCN) of the formally hydridic B-H bonds is dramatically increased by more than 120 orders of magnitude. The electrophilic activation of B-H bonds in the carborane moiety gives rise to a proton transfer from boron to nitrogen at slightly elevated temperatures, as rationalized by the isolation of a mixture of the zwitterionic isomers 12- and 7-[2-(tBuN{H}CH)C6 H4 Te(CB11 H11 )] in ratios ranging from 62 : 38 to 80 : 20.

Zobrazit více v PubMed

Power P. P., Nature 2010, 463, 171; PubMed

Weetman C., Inoue S., ChemCatChem 2018, 10, 4213–4228.

Stephan D. W., Erker G., Angew. Chem. Int. Ed. 2010, 49, 46–76; PubMed

Stephan D. W. J. Am. Chem. Soc. 2015, 137, 10018–10032; PubMed

Stephan D. W., Acc. Chem. Res. 2015, 48, 306–316; PubMed

Stephan D. W., Erker G., Angew. Chem. Int. Ed. 2015, 54, 6400–6441. PubMed

Hejda M., Duvinage D., Lork E., Lyčka A., Mebs S., Dostál L., Beckmann J., Organometallics 2020, 39, 1202–1212.

Körbe S., Schreiber P. J., Michl J., Chem. Rev. 2006, 106, 5208–5249; PubMed

Douvris C., Michl J., Chem. Rev. 2013, 113, PR179-PR233. PubMed

Hejda M., Lork E., Mebs S., Dostál L., Beckmann J., Eur. J. Inorg. Chem. 2017, 3435–3445.

Shelly K., Finster D. C., Lee Y. J., Scheidt W. R., Reed C. A., J. Am. Chem. Soc. 1985, 107, 5955–5959.

Deposition Number 2092933 (1), 2092934 (2 a/2 b), 2092935 (3), 2092936 (4) and 2092937 (5 a/5 b) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service. The isomerism of 2 a/2 b and 5 a/5 b is reflected by statistical disorder of B and C sites in the icosahedral carborane structure. DOI

B12 refers to the antipodal position, whereas B7 is one of the five positions in the lower pentagonal belt.

Mutual molar ratio of 2 a/2 b and 5 a/5 b, respectively, is very dependent on the reaction conditions, for example, the temperature.

The 125Te MAS NMR spectrum of 2 a/2 b shows three signals at δ iso=991, 802 and 374 ppm. See the Supporting Information, Figure S15.

Beckmann J., Bolsinger J., Duthie A., Finke P., Lork E., Lüdtke C., Mallow O., Mebs S., Inorg. Chem. 2012, 51, 12395–12406. PubMed

Jeske J., du Mont W.-W., Ruthe F., Jones P. G., Mercuri L. M., Deplano P., Eur. J. Inorg. Chem. 2000, 1591–1599.

Obtained values of δ(125Te) for 5 a (94.0 ppm), 5 b (58.4 ppm) and 3 (1749.7 ppm) acquired by solution 125Te NMR in [D8]THF significantly differ from values of 2 a(2 b) given in ref. [10] and thus serves as another proof of Te→Te bond dissociation after dissolving 2 a(2 b) in THF.

The donor-acceptor Te−E bonds of 2 (E=Te, 3.034(1) Å), 3 (E=O, 2.403(1) Å), 4 (E=N, 2.293(2) Å) are significantly longer than the sum of covalent radii (2.76, 2.04 and 0.09 respectively). B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Ceemades, F. Barragán, S. Alvarez, Dalton Trans. 2008, 2832–2838. PubMed

Despite extremely long acquisition times (several days), no 125Te NMR signal was obtained for 1 in CD2Cl2. It is known that the 125Te NMR chemical shift of I dramatically depends on the WCA (see ref. [3] for details). The donor acceptor complexes 3 and 4 resonate at 1749.7 and 1446.9 ppm, respectively, in [D8]THF, whereas the isomeric mixture of 5 a and 5 b shows two signals at 94.0 and 58.4 ppm in [D8]THF.

Hnyk D., Holub J., Růžička A., Padělková Z., Bühl M., Struct. Chem. 2013, 24, 927–932.

Binsch G., Lambert J. B., Roberts B. W., Roberts J. D., J. Am. Chem. Soc. 1964, 86, 5564–5570.

The pK a values were calculated as described previously:

Kather R., Rychagova E., Sanz Camacho P., Ashbrook S. E., Woollins J. D., Robben L., Lork E., Ketkov S., Beckmann J. Chem. Commun. 2016, 52, 10992–10995; PubMed

Olaru M., Hesse M. F., Rychagova E., Ketkov S., Mebs S., Beckmann J, Angew. Chem. Int. Ed. 2017, 56, 16490–16494; PubMed

Angew. Chem. 2017, 129, 16713–16717. See Supporting Information for further details.

Bader R. W. F., Atoms in Molecules: A Quantum Theory, Cambridge University Press Oxford, 1991.

Johnson E. R., Keinan S., Mori-Sanchez P., Contreras-García J., Cohen A. J., Yang W., J. Am. Chem. Soc. 2010, 132, 6498–6506. PubMed PMC

Kohout M., Int. J. Quantum Chem. 2004, 97, 651–658;

Kohout M., Wagner F. R., Grin Y., Theor. Chem. Acc. 2008, 119, 413–420.

Kaleta J., Akdag A., Crespo R., Piqueras M.-C., Michl J., ChemPlusChem 2013, 78, 1174–1183. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...