Lab-In-Syringe with Bead Injection Coupled Online to High-Performance Liquid Chromatography as Versatile Tool for Determination of Nonsteroidal Anti-Inflammatory Drugs in Surface Waters

. 2021 Sep 03 ; 26 (17) : . [epub] 20210903

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34500791

Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000465 European Regional Development Fund
1070120 Grantová Agentura, Univerzita Karlova
SVV 260 548 Charles University, Faculty of Pharmacy

We report on the hyphenation of the modern flow techniques Lab-In-Syringe and Lab-On-Valve for automated sample preparation coupled online with high-performance liquid chromatography. Adopting the bead injection concept on the Lab-On-Valve platform, the on-demand, renewable, solid-phase extraction of five nonsteroidal anti-inflammatory drugs, namely ketoprofen, naproxen, flurbiprofen, diclofenac, and ibuprofen, was carried out as a proof-of-concept. In-syringe mixing of the sample with buffer and standards allowed straightforward pre-load sample modification for the preconcentration of large sample volumes. Packing of ca. 4.4 mg microSPE columns from Oasis HLB® sorbent slurry was performed for each sample analysis using a simple microcolumn adapted to the Lab-On-Valve manifold to achieve low backpressure during loading. Eluted analytes were injected into online coupled HPLC with subsequent separation on a Symmetry C18 column in isocratic mode. The optimized method was highly reproducible, with RSD values of 3.2% to 7.6% on 20 µg L-1 level. Linearity was confirmed up to 200 µg L-1 and LOD values were between 0.06 and 1.98 µg L-1. Recovery factors between 91 and 109% were obtained in the analysis of spiked surface water samples.

Zobrazit více v PubMed

Bacchi S., Palumbo P., Sponta A., Coppolino M.F. Clinical Pharmacology of Non-Steroidal Anti-Inflammatory Drugs: A Review. Antiinflamm. Antiallergy Agents Med. Chem. 2012;11:52–64. doi: 10.2174/187152312803476255. PubMed DOI

Rebecca Wong S.Y. Role of nonsteroidal anti-inflammatory drugs (NSAIDs) in cancer prevention and cancer promotion. Adv. Pharmacol. Pharm. Sci. 2019;2019:3418975. PubMed PMC

Papich M.G. An update on nonsteroidal anti-inflammatory drugs (NSAIDs) in small animals. Vet. Clin. N. Am. Small Anim. Pract. 2008;38:1243–1266. doi: 10.1016/j.cvsm.2008.09.002. PubMed DOI

Ramos-Payan M., Maspoch S., Llobera A. An effective micro fluidic based liquid-phase microextraction device (m LPME) for extraction of non-steroidal anti-inflammatory drugs from biological and environmental samples. Anal. Chim. Acta. 2016;946:56–63. doi: 10.1016/j.aca.2016.09.040. PubMed DOI

Farré M., Petrovic M., Barceló D. Recently developed GC/MS and LC/MS methods for determining NSAIDs in water samples. Anal. Bioanal. Chem. 2007;387:1203–1214. doi: 10.1007/s00216-006-0936-x. PubMed DOI

Tixier C., Müller S.R. Occurrence and fate of carbamazepine, clofibric acid, diclofenac, Ibuprofen, ketoprofen and Naproxen in Surface Waters. Environ Sci. Technol. 2003;37:1061–1068. doi: 10.1021/es025834r. PubMed DOI

Jiang C., Geng J., Hu H., Ma H., Gao X., Ren H. Impact of selected non-steroidal anti- inflammatory pharmaceuticals on microbial community assembly and activity in sequencing batch reactors. PLoS ONE. 2017;12:e0179236. doi: 10.1371/journal.pone.0179236. PubMed DOI PMC

Fent K., Weston A.A., Caminada D. Ecotoxicology of human pharmaceuticals. Aquatic Toxicology. 2006;76:122–159. doi: 10.1016/j.aquatox.2005.09.009. PubMed DOI

Vieno N., Sillanpää M. Fate of diclofenac in municipal wastewater treatment plant—A review. Environ. Int. 2014;69:28–39. doi: 10.1016/j.envint.2014.03.021. PubMed DOI

EU Directive 2013/39/EU of the European Parliament and of the Council. [(accessed on 28 January 2021)]; Available online: https://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:EN:PDF.

Kramulov B., Tauchen J., Marsik P., Rezek J., Zidkov M. Non-steroidal anti-inflammatory drugs in the watercourses of Elbe basin in Czech Republic. Chemosphere. 2017;171:97–105. PubMed

Commission Implementing Decision (EU) 2015/495 of 20 March 2015 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council. [(accessed on 22 March 2021)]; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2015.078.01.0040.01.ENG.

García A., Borrull F., Calull M., Aguilar C. Single-drop microextraction combined in-line with capillary electrophoresis for the determination of nonsteroidal anti-inflammatory drugs in urine samples. Electrophoresis. 2016;37:274–281. doi: 10.1002/elps.201500373. PubMed DOI

Gilart N., Marcé R.M., Fontanals N., Borrull F. A rapid determination of acidic pharmaceuticals in environmental waters by molecularly imprinted solid-phase extraction coupled to tandem mass spectrometry without chromatography. Talanta. 2013;110:196–201. doi: 10.1016/j.talanta.2013.02.039. PubMed DOI

Martinez-Sena T., Armenta S., De la Guardia M., Esteve-Turrillas F.A. Determination of non-steroidal anti-inflammatory drugs in water and urine using selective molecular imprinted polymer extraction and liquid chromatography. J. Pharm. Biomed. Anal. 2016;131:48–53. doi: 10.1016/j.jpba.2016.08.006. PubMed DOI

Aguilar-Arteaga K., Rodriguez J.A., Miranda J.M., Medina J., Barrado E. Determination of non-steroidal anti-inflammatory drugs in wastewaters by magnetic matrix solid phase dispersion—HPLC. Talanta. 2010;80:1152–1157. doi: 10.1016/j.talanta.2009.08.042. PubMed DOI

Ferrone V., Carlucci M., Ettorre V., Cotellese R., Palumbo P., Fontana A., Siani G., Carlucci G. Dispersive magnetic solid phase extraction exploiting magnetic graphene nanocomposite coupled with UHPLC-PDA for simultaneous determination of NSAIDs in human plasma and urine. J. Pharm. Biomed. Anal. 2018;161:280–288. doi: 10.1016/j.jpba.2018.08.005. PubMed DOI

Fan W., Mao X., He M., Chen B., Hu B. Development of novel sol-gel coatings by chemically bonded ionic liquids for stir bar sorptive extraction-application for the determination of NSAIDS in real samples. Anal. Bioanal. Chem. 2014;406:7261–7273. doi: 10.1007/s00216-014-8141-9. PubMed DOI

Manzo V., Miró M., Richter P. Programmable flow-based dynamic sorptive microextraction exploiting an octadecyl chemically modified rotating disk extraction system for the determination of acidic drugs in urine. J. Chromatogr. A. 2014;1368:64–69. doi: 10.1016/j.chroma.2014.09.079. PubMed DOI

Wang R., Li W., Chen Z. Solid phase microextraction with poly (deep eutectic solvent) monolithic column online coupled to HPLC for determination of non- steroidal anti-inflammatory drugs. Anal. Chim. Acta. 2018;1018:111–118. doi: 10.1016/j.aca.2018.02.024. PubMed DOI

Abd Rahim M., Wan Ibrahim W.A., Ramli Z., Sanagi M.M., Aboul-Enein H.Y. New sol-gel hybrid material in solid phase extraction combined with liquid chromatography for the determination of non-steroidal anti-inflammatory drugs in water samples. Chromatographia. 2016;79:421–429. doi: 10.1007/s10337-016-3059-3. DOI

Mirzajani R., Kardani F., Ramezani Z. Preparation and characterization of magnetic metal–organic framework nanocomposite as solid-phase microextraction fibers coupled with high- performance liquid chromatography for determination of non-steroidal anti-inflammatory drugs in biological fluids and tablet formulation samples. Microchem. J. 2019;144:270–284.

Jian N., Qian L., Wang C., Li R., Xu Q., Li J. Novel nanofibers mat as an efficient, fast and reusable adsorbent for solid phase extraction of non-steroidal anti-inflammatory drugs in environmental water. J. Hazard. Mater. 2019;363:81–89. doi: 10.1016/j.jhazmat.2018.09.052. PubMed DOI

Seidi S., Sanàti S. Nickel-iron layered double hydroxide nanostructures for micro solid phase extraction of nonsteroidal anti-inflammatory drugs, followed by quantitation by HPLC-UV. Microchim. Acta. 2019;186:297. doi: 10.1007/s00604-019-3419-4. PubMed DOI

Rodriguez-Mozaz S., De Alda M.J.L. Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography—Mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water. J. Chromatogr. A. 2007;1152:97–115. doi: 10.1016/j.chroma.2007.01.046. PubMed DOI

Togola A., Budzinski H. Analytical development for analysis of pharmaceuticals in water samples by SPE and GC-MS. Anal. Bioanal. Chem. 2007;388:627–635. doi: 10.1007/s00216-007-1251-x. PubMed DOI

Agunbiade F.O., Moodley B. Occurrence and distribution pattern of acidic pharmaceuticals in surface water, wastewater, and sediment of the Msunduzi river, Kwazulu-Natal, South Africa. Environ. Toxicol. Chem. 2016;35:36–46. doi: 10.1002/etc.3144. PubMed DOI

Quintana J.B., Miró M., Estela J.M., Cerdà V. Automated On-Line Renewable Solid-Phase Extraction-Liquid Chromatography Exploiting Multisyringe Flow Injection-Bead Injection Lab-on-Valve Analysis. Anal. Chem. 2006;78:2832–2840. doi: 10.1021/ac052256z. PubMed DOI

Cocovi-Solberg D.J., Miro M. 3D Printing: The second dawn of lab-on-valve fluidic platforms for automatic biochemical assays. Anal. Chem. 2019;91:1140–1149. doi: 10.1021/acs.analchem.8b04900. PubMed DOI

Trojanowicz M. Recent advances in flow injection analysis. Analyst. 2016;141:2085–2139. doi: 10.1039/C5AN02522B. PubMed DOI

Růžička J., Scampavia L. From Flow Injection to Bead Injection. Anal. Chem. 1999;71:257A–263A. doi: 10.1021/ac990293i. PubMed DOI

Růžička J. Lab-on-valve: Universal microflow analyzer based on sequential and bead injection. Analyst. 2000;125:1053–1060. doi: 10.1039/b001125h. DOI

Růžička J., Marshall G.D. Sequential injection: A new concept for chemical sensors, process analysis and laboratory assays. Anal. Chim. Acta. 1990;237:329–343. doi: 10.1016/S0003-2670(00)83937-9. DOI

Oliveira H.M., Miró M., Segundo M.A., Lima J.L.F.C. Universal approach for mesofluidic handling of bead suspensions in lab-on-valve format. Talanta. 2011;84:846–852. doi: 10.1016/j.talanta.2011.02.011. PubMed DOI

Vichapong J., Buraham R., Srijaranai S., Grudpan K. Sequential injection-bead injection-lab-on- valve coupled to high-performance liquid chromatography for online renewable micro- solid-phase extraction of carbamate residues in food and environmental samples. J. Sep. Sci. 2011;34:1574–1581. doi: 10.1002/jssc.201100075. PubMed DOI

Oliveira H.M., Segundo M.A., Lima J.L.F.C., Miró M., Cerdà V. Exploiting automatic on-line renewable molecularly imprinted solid-phase extraction in lab-on-valve format as front end to liquid chromatography: Application to the determination of riboflavin in foodstuffs. Anal. Bioanal. Chem. 2010;397:77–86. doi: 10.1007/s00216-010-3522-1. PubMed DOI

Vidigal S.S.M.P., Tóth I.V., Rangel A.O.S.S. Exploiting the bead injection LOV approach to carry out spectrophotometric assays in wine: Application to the determination of iron. Talanta. 2011;84:1298–1303. doi: 10.1016/j.talanta.2011.01.041. PubMed DOI

Miró M., Jończyk S., Wang J., Hansen E.H. Exploiting the bead-injection approach in the integrated sequential injection lab-on-valve format using hydrophobic packing materials for on-line matrix removal and preconcentration of trace levels of cadmium in environmental and biological samples via formation of non-charged chelates prior to ETAAS detection. J. Anal. At. Spectrom. 2003;18:89–98.

Horstkotte B., Chocholouš P., Solich P. Large volume preconcentration and determination of nanomolar concentrations of iron in seawater using a renewable cellulose 8-hydroquinoline sorbent microcolumn and universal approach of post-column eluate utilization in a Lab-on-Valve system. Talanta. 2016;150:213–223. doi: 10.1016/j.talanta.2015.12.044. PubMed DOI

Quintana B., Boonjob W., Miro M. Online Coupling of Bead Injection Lab-On-Valve Analysis to Gas Chromatography: Application to the Determination of Trace Levels of Polychlorinated Biphenyls in Solid Waste. Anal. Chem. 2009;81:4822–4830. doi: 10.1021/ac900409u. PubMed DOI

Grand M.M., Chocholouš P., Růžička J., Solich P., Measures C.I. Determination of trace zinc in seawater by coupling solid phase extraction and fluorescence detection in the Lab-On-Valve format. Anal. Chim. Acta. 2016;923:45–54. doi: 10.1016/j.aca.2016.03.056. PubMed DOI

Maya F., Horstkotte B., Estela J.M., Cerdà V. Lab in a syringe: Fully automated dispersive liquid-liquid microextraction with integrated spectrophotometric detection. Anal. Bioanal. Chem. 2012;404:909–917. doi: 10.1007/s00216-012-6159-4. PubMed DOI

Horstkotte B., Solich P. The Automation Technique Lab-In-Syringe: A Practical Guide. Molecules. 2020;25:1612. doi: 10.3390/molecules25071612. PubMed DOI PMC

Alexovič M., Horstkotte B., Šrámková I., Solich P., Sabo J. Automation of dispersive liquid-liquid microextraction and related techniques. Approaches based on flow, batch, flow-batch and in- syringe modes. Trends Anal. Chem. 2017;86:39–55. doi: 10.1016/j.trac.2016.10.003. DOI

Horstkotte B., Suárez R., Solich P., Cerdà V. In-syringe-stirring: A novel approach for magnetic stirring-assisted dispersive liquid–liquid microextraction. Anal. Chim Acta. 2013;788:52–60. doi: 10.1016/j.aca.2013.05.049. PubMed DOI

Horstkotte B., Miró M., Solich P. Where are modern flow techniques heading to? Anal. Bioanal. Chem. 2018;410:6361–6370. doi: 10.1007/s00216-018-1285-2. PubMed DOI

Maya F., Cabello C.P., Estela J.M., Cerda V. Automatic In-Syringe Dispersive Microsolid Phase Extraction Using Magnetic Metal—Organic Frameworks. Anal. Chem. 2015;87:7545–7549. doi: 10.1021/acs.analchem.5b01993. PubMed DOI

Methods, Method Verification and Validation Volume 2 (fda.gov) [(accessed on 11 August 2021)]; Available online: https://www.fda.gov/media/73920/download.

Cocoví-Solberg D.J., Miró M. CocoSoft: Educational software for automation in the analytical chemistry laboratory. Anal. Bioanal. Chem. 2015;407:6227–6233. doi: 10.1007/s00216-015-8834-8. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...