The Automation Technique Lab-In-Syringe: A Practical Guide
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000841
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32244706
PubMed Central
PMC7181287
DOI
10.3390/molecules25071612
PII: molecules25071612
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing of instrument elements, Lab-In-Syringe, automation of sample pretreatment, potentials and troubles, system setup and operation modes, tips and tricks in method development,
- MeSH
- chemické techniky analytické přístrojové vybavení metody normy MeSH
- injekční stříkačky * MeSH
- laboratorní automatizace * MeSH
- limita detekce MeSH
- reprodukovatelnost výsledků MeSH
- Publikační typ
- časopisecké články MeSH
About eight years ago, a new automation approach and flow technique called "Lab-In-Syringe" was proposed. It was derived from previous flow techniques, all based on handling reagent and sample solutions in a flow manifold. To date Lab-In-Syringe has evidently gained the interest of researchers in many countries, with new modifications, operation modes, and technical improvements still popping up. It has proven to be a versatile tool for the automation of sample preparation, particularly, liquid-phase microextraction approaches. This article aims to assist newcomers to this technique in system planning and setup by overviewing the different options for configurations, limitations, and feasible operations. This includes syringe orientation, in-syringe stirring modes, in-syringe detection, additional inlets, and addable features. The authors give also a chronological overview of technical milestones and a critical explanation on the potentials and shortcomings of this technique, calculations of characteristics, and tips and tricks on method development. Moreover, a comprehensive overview of the different operation modes of Lab-In-Syringe automated sample pretreatment is given focusing on the technical aspects and challenges of the related operations. We further deal with possibilities on how to fabricate required or useful system components, in particular by 3D printing technology, with over 20 different elements exemplarily shown. Finally, a short discussion on shortcomings and required improvements is given.
Zobrazit více v PubMed
Růžička J., Marshall G. Sequential injection: A new concept for chemical sensors, process analysis and laboratory assays. Anal. Chim. Acta. 1990;237:329–343. doi: 10.1016/S0003-2670(00)83937-9. DOI
Economou A. Sequential-injection analysis (SIA): A useful tool for on-line sample handling and pre-treatment. Trends Anal. Chem. 2005;24:416–425. doi: 10.1016/j.trac.2004.12.004. DOI
Horstkotte B., Miro M., Solich P. Where are modern flow techniques heading to? Anal. Bioanal. Chem. 2018;410:6361–6370. doi: 10.1007/s00216-018-1285-2. PubMed DOI
Zagatto E.A.G., Rocha F.R.P. The multiple facets of flow analysis. A tutorial. Anal. Chim. Acta. 2020;1093:75–85. doi: 10.1016/j.aca.2019.09.050. PubMed DOI
Trojanowicz M., Kołacińska K. Recent advances in flow injection analysis. Analyst. 2016;141:2085–2139. doi: 10.1039/C5AN02522B. PubMed DOI
Kolev S.D., Mc Kelvie I. Advances in Flow Injection Analysis and Related Techniques. 1st ed. Volume 54 Elsevier; Amsterdam, The Netherlands: 2008.
Trojanowicz M. Instrumentation and Applications. 1st ed. World Scientific Publishing; Singapore: 2000. Flow injection analysis.
Hansen E.H., Růžička J. Flow Injection Analysis. Tutorial & News on Flow-Based Micronalytical Techniques. [(accessed on 5 March 2020)]; Available online: http://www.flowinjectiontutorial.com.
Dias Diniz P.H.G., de Almeida L.F., Harding D.P., de Araújo M.C.U. Flow-batch analysis. Anal. Bioanal. Chem. 2012;35:39–49. doi: 10.1016/j.trac.2012.02.009. DOI
Zagatto E.A.G., Carneiro J.M.T., Vicente S., Fortes P.R., Santos J.L.M., Lima J.L.F.C. Mixing chambers in flow analysis: A review. J. Anal. Chem. 2009;64:524–532. doi: 10.1134/S1061934809050165. DOI
Prabhu G.R.D., Urban P.L. The dawn of unmanned analytical laboratories. Trends Anal. Chem. 2017;88:41–52. doi: 10.1016/j.trac.2016.12.011. DOI
Maya F., Estela J.M., Cerdà V. Completely automated in-syringe dispersive liquid-liquid microextraction using solvents lighter than water. Anal. Bioanal. Chem. 2012;402:1383–1388. doi: 10.1007/s00216-011-5572-4. PubMed DOI
Maya F., Horstkotte B., Estela J.M., Cerdà V. Lab in a syringe: Fully automated dispersive liquid-liquid microextraction with integrated spectrophotometric detection. Anal. Bioanal. Chem. 2012;404:909–917. doi: 10.1007/s00216-012-6159-4. PubMed DOI
Horstkotte B., Alexovič M., Maya F., Duarte C.M., Andruch V., Cerdà V. Automatic determination of copper by in-syringe dispersive liquid–liquid microextraction of its bathocuproine-complex using long path-length spectrophotometric detection. Talanta. 2012;99:349–356. doi: 10.1016/j.talanta.2012.05.063. PubMed DOI
Suárez R., Horstkotte B., Duarte C.M., Cerdà V. Fully-automated fluorimetric determination of aluminum in seawater by in-syringe dispersive liquid-liquid microextraction using lumogallion. Anal. Chem. 2012;84:9462–9469. doi: 10.1021/ac302083d. PubMed DOI
Horstkotte B., Suárez R., Solich P., Cerdà V. In-syringe stirring: A novel approach for magnetic stirring-assisted dispersive liquid-liquid microextraction. Anal. Chim. Acta. 2013;788:52–60. doi: 10.1016/j.aca.2013.05.049. PubMed DOI
Henriquez C., Horstkotte B., Solich P., Cerdà V. In-syringe magnetic-stirring-assisted liquid-liquid microextraction for the spectrophotometric determination of Cr(VI) in waters. Anal. Bioanal. Chem. 2013;405:6761–6769. doi: 10.1007/s00216-013-7111-y. PubMed DOI
Horstkotte B., Suárez R., Solich P., Cerdà V. In-syringe magnetic stirring assisted dispersive liquid-liquid micro-extraction with solvent washing for fully automated determination of cationic surfactants. Anal. Meth. 2014;6:9601–9609. doi: 10.1039/C4AY01695E. DOI
Šrámková I., Horstkotte B., Sklenářová H., Solich P., Kolev S.D. A novel approach to Lab-In-Syringe Head-Space Single-Drop Microextraction and on-drop sensing of ammonia. Anal. Chim. Acta. 2016;934:132–144. doi: 10.1016/j.aca.2016.06.039. PubMed DOI
Horstkotte B., Lopez de los Mozos Atochero N., Solich P. Lab-In-Syringe automation of stirring-assisted room-temperature headspace extraction coupled online to gas chromatography with flame ionization detection for determination of benzene, toluene, ethylbenzene, and xylenes in surface waters. J. Chromatogr. A. 2018;1555:1–9. PubMed
Fikarová K., Horstkotte B., Sklenářová H., Švec F., Solich P. Automated continuous-flow in-syringe dispersive liquid-liquid microextraction of mono-nitrophenols from large sample volumes using a novel approach to multivariate spectral analysis. Talanta. 2019;202:11–20. doi: 10.1016/j.talanta.2019.04.044. PubMed DOI
Giakisikli G., Anthemidis A.N. Automatic pressure-assisted dual-headspace gas-liquid microextraction. Lab-in-syringe platform for membraneless gas separation of ammonia coupled with fluorimetric sequential injection analysis. Anal. Chim. Acta. 2018;1033:73–80. doi: 10.1016/j.aca.2018.06.034. PubMed DOI
Šrámková I.B., Horstkotte B., Solich P., Sklenářová H. Automated in-syringe single-drop head-space micro-extraction applied to the determination of ethanol in wine samples. Anal. Chim. Acta. 2014;828:53–60. doi: 10.1016/j.aca.2014.04.031. PubMed DOI
Mitani C., Kotzamanidou A., Anthemidis A.N. Automated headspace single-drop microextraction via a lab-in-syringe platform for mercury electrothermal atomic absorption spectrometric determination after in situ vapor generation. J. Anal. Atom. Spectr. 2014;29:1491–1498. doi: 10.1039/C4JA00062E. DOI
Dias A.C.B., Borges E.P., Zagatto E.A.G., Worsfold P.J. A critical examination of the components of the Schlieren effect in flow analysis. Talanta. 2006;68:1076–1082. doi: 10.1016/j.talanta.2005.06.071. PubMed DOI
Zhu X., Deng Y., Li P., Yuan D., Ma J. Automated syringe-pump-based flow-batch analysis for spectrophotometric determination of trace hexavalent chromium in water samples. Microchem. J. 2019;145:1135–1142. doi: 10.1016/j.microc.2018.12.040. DOI
Ma J., Li P., Chen Z., Lin K., Chen N., Jiang Y., Chen J., Huang B., Yuan D. Development of an Integrated Syringe-Pump-Based Environmental-Water Analyzer ( iSEA) and Application of It for Fully Automated Real-Time Determination of Ammonium in Fresh Water. Anal. Chem. 2018;90:6431–6435. doi: 10.1021/acs.analchem.8b01490. PubMed DOI
Paluch J., Kozak J., Wieczorek M., Kozak M., Kochana J., Widurek K., Konieczna M., Koscielniak P. Novel approach to two-component speciation analysis. Spectrophotometric flow-based determinations of Fe(II)/Fe(III) and Cr(III)/Cr(VI) Talanta. 2017;171:275–282. doi: 10.1016/j.talanta.2017.05.005. PubMed DOI
Wieczorek M., Rengevicova S., Świt P., Woźniakiewicz A., Kozak J., Kościelniak P. New approach to H-point standard addition method for detection and elimination of unspecific interferences in samples with unknown matrix. Talanta. 2017;170:165–172. doi: 10.1016/j.talanta.2017.03.101. PubMed DOI
Soares S., Melchert W.R., Rocha F.R.P. A flow-based procedure exploiting the lab-in-syringe approach for the determination of ester content in biodiesel and diesel/biodiesel blends. Talanta. 2017;174:556–561. doi: 10.1016/j.talanta.2017.06.053. PubMed DOI
Alexovič M., Horstkotte B., Solich P., Sabo J. Automation of dispersive liquid-liquid microextraction and related techniques. Approaches based on flow, batch, flow-batch and in syringe modes. Trends Anal. Chem. 2017;86:39–55.
Alexovič M., Horstkotte B., Solich P., Sabo J. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 1: Approaches based on extractant drop-, plug-, film- and microflow-formation. Anal. Chim. Acta. 2016;906:22–40. doi: 10.1016/j.aca.2015.11.038. PubMed DOI
Alexovič M., Horstkotte B., Solich P., Sabo J. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: Approaches based on impregnated membranes and porous supports. Anal. Chim. Acta. 2016;907:18–30. doi: 10.1016/j.aca.2015.11.046. PubMed DOI
Clavijo S., del Rosario Brunetto M., Cerdà V. In-syringe-assisted dispersive liquid-liquid microextraction coupled to gas chromatography with mass spectrometry for the determination of six phthalates in water samples. J. Sep. Sci. 2014;37:974–981. doi: 10.1002/jssc.201301176. PubMed DOI
Clavijo S., Avivar J., Suarez R., Cerdà V. In-syringe magnetic stirring-assisted dispersive liquid-liquid microextraction and silylation prior gas chromatography-mass spectrometry for ultraviolet filters determination in environmental water samples. J. Chromatogr. A. 2016;1443:26–34. doi: 10.1016/j.chroma.2016.03.036. PubMed DOI
Villar M., Avivar J., Ferrer L., Borràs A., Vega F., Cerdà V. Automatic in-syringe dispersive liquid–liquid microextraction of 99Tc from biological samples and hospital residues prior to liquid scintillation counting. Anal. Bioanal. Chem. 2015;407:5571–5578. doi: 10.1007/s00216-015-8761-8. PubMed DOI
Vargas Medina D.A., Santos-Neto Á.J., Cerdà V., Maya F. Automated dispersive liquid-liquid microextraction based on the solidification of the organic phase. Talanta. 2018;189:241–248. doi: 10.1016/j.talanta.2018.06.081. PubMed DOI
Wang X., Xu G., Chen P., Sun Y., Yao X., Lv Y., Guo W., Wang G. Fully-automated magnetic stirring-assisted lab-in-syringe dispersive liquid–liquid microextraction for the determination of arsenic species in rice samples. RSC Advances. 2018;8:16858–16865. doi: 10.1039/C8RA00875B. PubMed DOI PMC
Sanchez R., Horstkotte B., Fikarová K., Sklenářová H., Maestre S., Miro M., Todoli J.L. Fully Automatic In-Syringe Magnetic Stirring-Assisted Dispersive Liquid Liquid Microextraction Hyphenated to High-Temperature Torch Integrated Sample Introduction System-Inductively Coupled Plasma Spectrometer with Direct Injection of the Organic Phase. Anal. Chem. 2017;89:3787–3794. doi: 10.1021/acs.analchem.7b00400. PubMed DOI
González A., Avivar J., Cerdà V. Determination of priority phenolic pollutants exploiting an in-syringe dispersive liquid–liquid microextraction–multisyringe chromatography system. Anal. Bioanal. Chem. 2015;407:2013–2022. doi: 10.1007/s00216-015-8464-1. PubMed DOI
Horstkotte B., Fikarová K., Cocovi-Solberg D.J., Sklenářová39 H., Solich P., Miro M. Online coupling of fully automatic in-syringe dispersive liquid-liquid microextraction with oxidative back-extraction to inductively coupled plasma spectrometry for sample clean-up in elemental analysis: A proof of concept. Talanta. 2017;173:79–87. doi: 10.1016/j.talanta.2017.05.063. PubMed DOI
Suárez R., Clavijo S., Avivar J., Cerdà V. On-line in-syringe magnetic stirring assisted dispersive liquid-liquid microextraction HPLC--UV method for UV filters determination using 1-hexyl-3-methylimidazolium hexafluorophosphate as extractant. Talanta. 2016;148:589–595. doi: 10.1016/j.talanta.2015.10.031. PubMed DOI
Shishov A., Terno P., Moskvin L., Bulatov A. In-syringe dispersive liquid-liquid microextraction using deep eutectic solvent as disperser: Determination of chromium (VI) in beverages. Talanta. 2020;206:120209. doi: 10.1016/j.talanta.2019.120209. PubMed DOI
Timofeeva I., Shishov A., Kanashina D., Dzema D., Bulatov A. On-line in-syringe sugaring-out liquid-liquid extraction coupled with HPLC-MS/MS for the determination of pesticides in fruit and berry juices. Talanta. 2017;167:761–767. doi: 10.1016/j.talanta.2017.01.008. PubMed DOI
Pochivalov A., Vakh C., Garmonov S., Moskvin L., Bulatov A. An automated in-syringe switchable hydrophilicity solvent-based microextraction. Talanta. 2020;209:120587. doi: 10.1016/j.talanta.2019.120587. PubMed DOI
Frizzarin R.M., Portugal L.A., Estela J.M., Rocha F.R.P., Cerdà V. On-line lab-in-syringe cloud point extraction for the spectrophotometric determination of antimony. Talanta. 2016;148:694–699. doi: 10.1016/j.talanta.2015.04.076. PubMed DOI
Davletbaeva P., Falkova M., Safonova E., Moskvin L., Bulatov A. Flow method based on cloud point extraction for fluorometric determination of epinephrine in human urine. Anal. Chim. Acta. 2016;911:69–74. doi: 10.1016/j.aca.2015.12.045. PubMed DOI
Maya F., Cabello C.P., Estela J.M., Cerdà V., Palomino G.T. Automatic In-Syringe Dispersive Microsolid Phase Extraction Using Magnetic-Metal Organic Frameworks. Anal. Chem. 2015;87:7545–7549. doi: 10.1021/acs.analchem.5b01993. PubMed DOI
Gonzalez A., Avivar J., Maya F., Palomino Cabello C., Turnes Palomino G., Cerdà V. In-syringe dispersive mu-SPE of estrogens using magnetic carbon microparticles obtained from zeolitic imidazolate frameworks. Anal. Bioanal. Chem. 2017;409:225–234. doi: 10.1007/s00216-016-9988-8. PubMed DOI
Giakisikli G., Anthemidis A.N. An automatic stirring-assisted liquid-liquid microextraction system based on lab-in-syringe platform for on-line atomic spectrometric determination of trace metals. Talanta. 2017;166:364–368. doi: 10.1016/j.talanta.2016.02.057. PubMed DOI
Šrámková I.H., Horstkotte B., Fikarová K., Sklenářová H., Solich P. Direct-immersion single-drop microextraction and in-drop stirring microextraction for the determination of nanomolar concentrations of lead using automated Lab-In-Syringe technique. Talanta. 2018;184:162–172. doi: 10.1016/j.talanta.2018.02.101. PubMed DOI
Sasaki M.K., Souza P.A.F., Kamogawa M.Y., Reis B.F., Rocha F.R.P. A new strategy for membraneless gas-liquid separation in flow analysis: Determination of dissolved inorganic carbon in natural waters. Microchem. J. 2019;145:1218–1223. doi: 10.1016/j.microc.2018.12.038. DOI