Lab-in-Syringe Automated Miniaturized Bioconjugation of Magnetic Beads with Anti-SARS-CoV2 Antibodies
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40757293
PubMed Central
PMC12311662
DOI
10.1021/acsomega.4c11126
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We present the first automated synthesis of magnetic immunosorbents (MIS) using a lab-in-syringe (LIS) platform, facilitating antibody bioconjugation to magnetic beads via carbodiimide-mediated covalent binding. This approach is an efficient, reproducible alternative to traditional manual methods, minimizing pipetting steps, vortexing, and incubation with a reduced handling bias. Utilizing a 1 mL syringe pump with a 12-port multiposition valve and an internal magnetic stir bar enables precise mixing, bead dispersion, and magnetic capture for consistent bioconjugate synthesis. The LIS platform achieved a 99.6% bead recovery with 0.4 mg of MIS (1 μm in diameter), outperforming the 83% recovery of manual techniques, and maintained an 83% recovery at reduced scales of 0.2 mg, surpassing manual yields of 76%. As a proof-of-concept, MIS conjugated with anti-SARS-CoV2 antibodies (6 μg/400 mg beads) were synthesized and validated for viral RNA isolation from COVID-19-positive samples, demonstrating high immunocapture efficiency comparable to manual methods but with significantly reduced time and labor requirements. This automated synthesis of antibody-MIS enables the scalable, reproducible production of bioconjugated materials, supporting advanced applications in diagnostic assays, therapeutic delivery, and microfluidic integrations. The LIS approach thus enhances the scope of biomolecular conjugate synthesis, offering streamlined workflows that are suited for downstream analytical and bioanalytical applications. LIS is a versatile, automated system for preparing MIS that researchers can adapt for various targets, particularly when commercial products are unavailable, are prohibitively expensive, or require custom carriers.
Zobrazit více v PubMed
Torres-Herrero B., Armenia I., Alleva M., Asín L., Correa S., Ortiz C., Fernández-Afonso Y., Gutiérrez L., de la Fuente J. M., Betancor L.. et al. Remote Activation of Enzyme Nanohybrids for Cancer Prodrug Therapy Controlled by Magnetic Heating. ACS Nano. 2023;17(13):12358–12373. doi: 10.1021/acsnano.3c01599. PubMed DOI PMC
Zhang L., Li Q., Liu J., Deng Z., Zhang X., Alifu N., Zhang X., Yu Z., Liu Y., Lan Z.. et al. Recent advances in functionalized ferrite nanoparticles: From fundamentals to magnetic hyperthermia cancer therapy. Colloids Surf., B. 2024;234:113754. doi: 10.1016/j.colsurfb.2024.113754. PubMed DOI
Li Z., Wan W., Bai Z., Peng B., Wang X., Cui L., Liu Z., Lin K., Yang J., Hao J.. et al. Construction of pH-responsive nanoplatform from stable magnetic nanoparticles for targeted drug delivery and intracellular imaging. Sens. Actuators, B. 2023;375:132869. doi: 10.1016/j.snb.2022.132869. DOI
Rahimkhoei V., Alzaidy A. H., Abed M. J., Rashki S., Salavati-Niasari M.. Advances in inorganic nanoparticles-based drug delivery in targeted breast cancer theranostics. Adv. Colloid Interface Sci. 2024;329:103204. doi: 10.1016/j.cis.2024.103204. PubMed DOI
Paltanea G., Manescu V., Antoniac I., Antoniac A., Nemoianu I. V., Robu A., Dura H.. A Review of Biomimetic and Biodegradable Magnetic Scaffolds for Bone Tissue Engineering and Oncology. International Journal of Molecular Sciences. 2023;24:4312. doi: 10.3390/ijms24054312. PubMed DOI PMC
Mao Y., Zhang Y., Yu Y., Zhu N., Zhou X., Li G., Yi Q., Wu Y.. Self-assembled supramolecular immunomagnetic nanoparticles through π–π stacking strategy for the enrichment of circulating tumor cells. Regenerative Biomaterials. 2023;10:rbad016. doi: 10.1093/rb/rbad016. PubMed DOI PMC
Wang Y., Li J., Liu H., Du X., Yang L., Zeng J.. Single-Probe-Based Colorimetric and Photothermal Dual-Mode Identification of Multiple Bacteria. Anal. Chem. 2023;95(5):3037–3044. doi: 10.1021/acs.analchem.2c05140. PubMed DOI
Kavruk M., Babaie Z., Kibar G., Çetin B., Yeşilkaya H., Amrani Y., Dursun A. D., Özalp V. C.. Aptamer decorated PDA@magnetic silica microparticles for bacteria purification. Microchimica Acta. 2024;191(5):285. doi: 10.1007/s00604-024-06322-3. PubMed DOI PMC
Wang X., Li S., Qu H., Hao L., Shao T., Wang K., Xia Z., Li Z., Li Q.. SERS-based immunomagnetic bead for rapid detection of H5N1 influenza virus. Influenza and Other Respiratory Viruses. 2023;17(3):e13114. doi: 10.1111/irv.13114. PubMed DOI PMC
Guo X., Hu F., Zhao S., Yong Z., Zhang Z., Peng N.. Immunomagnetic Separation Method Integrated with the Strep-Tag II System for Rapid Enrichment and Mild Release of Exosomes. Anal. Chem. 2023;95(7):3569–3576. doi: 10.1021/acs.analchem.2c03470. PubMed DOI
Dhandapani G., Nguyen V. G., Kim M. C., Noh J. Y., Jang S. S., Yoon S.-W., Jeong D. G., Huynh T. M. L., Le V. P., Song D.. et al. Magnetic-bead-based DNA-capture-assisted real-time polymerase chain reaction and recombinase polymerase amplification for the detection of African swine fever virus. Arch. Virol. 2023;168(1):21. doi: 10.1007/s00705-022-05681-7. PubMed DOI
Sadasivam M., Sakthivel A., Nagesh N., Hansda S., Veerapandian M., Alwarappan S., Manickam P.. Magnetic bead-amplified voltammetric detection for carbohydrate antigen 125 with enzyme labels using aptamer-antigen-antibody sandwiched assay. Sens. Actuators, B. 2020;312:127985. doi: 10.1016/j.snb.2020.127985. DOI
Soliman M. G., Trinh D. N., Ravagli C., Meleady P., Henry M., Movia D., Doumett S., Cappiello L., Prina-Mello A., Baldi G.. et al. Development of a fast and simple method for the isolation of superparamagnetic iron oxide nanoparticles protein corona from protein-rich matrices. J. Colloid Interface Sci. 2024;659:503–519. doi: 10.1016/j.jcis.2023.11.177. PubMed DOI
Shabatina T. I., Vernaya O. I., Shabatin V. P., Melnikov M. Y.. Magnetic Nanoparticles for Biomedical Purposes: Modern Trends and Prospects. Magnetochemistry. 2020;6(3):30. doi: 10.3390/magnetochemistry6030030. DOI
Zuo H., Wang X., Liu W., Chen Z., Liu R., Yang H., Xia C., Xie J., Sun T., Ning B.. Nanobody-based magnetic chemiluminescence immunoassay for one-pot detection of ochratoxin A. Talanta. 2023;258:124388. doi: 10.1016/j.talanta.2023.124388. PubMed DOI
Otieno, B. A. ; Krause, C. E. ; Rusling, J. F. . Bioconjugation of Antibodies and Enzyme Labels onto Magnetic Beads. In Methods in Enzymology, Kumar, C. V. , Ed.; Vol. 571; Academic Press, 2016; Chapter 7, pp 135–150. PubMed
Kamel H. H., Elleboudy N. A. F., Hasan A. N., Ali I. R., Mohammad O. S.. Nano magnetic-based ELISA and nano magnetic-based latex agglutination test for diagnosis of experimental trichinellosis. Journal of Parasitic Diseases. 2023;47(2):400–409. doi: 10.1007/s12639-023-01583-w. PubMed DOI PMC
Chen C., Liang H., Peng F., Zhong S., Lu Y., Guo G., Li L.. Determination of echinococcosis IgG antibodies using magnetic bead-based chemiluminescence immunoassay. Journal of Immunological Methods. 2023;520:113513. doi: 10.1016/j.jim.2023.113513. PubMed DOI
Lin C.-T., Kuo S.-H., Lin P.-H., Chiang P.-H., Lin W.-H., Chang C.-H., Tsou P.-H., Li B.-R.. Hand-powered centrifugal microfluidic disc with magnetic chitosan bead-based ELISA for antibody quantitation. Sens. Actuators, B. 2020;316:128003. doi: 10.1016/j.snb.2020.128003. DOI
Momeni M., Shamloo A., Hasani-Gangaraj M., Dezhkam R.. An experimental study of centrifugal microfluidic platforms for magnetic-inertial separation of circulating tumor cells using contraction-expansion and zigzag arrays. Journal of Chromatography A. 2023;1706:464249. doi: 10.1016/j.chroma.2023.464249. PubMed DOI
Yin D., Shi A., Zhou B., Wang M., Xu G., Shen M., Zhu X., Shi X.. Efficient Capture and Separation of Cancer Cells Using Hyaluronic Acid-Modified Magnetic Beads in a Microfluidic Chip. Langmuir. 2022;38(36):11080–11086. doi: 10.1021/acs.langmuir.2c01740. PubMed DOI
Horak D., Svobodova Z., Autebert J., Coudert B., Plichta Z., Kralovec K., Bilkova Z., Viovy J. L.. Albumin-coated monodisperse magnetic poly(glycidyl methacrylate) microspheres with immobilized antibodies: Application to the capture of epithelial cancer cells. J. Biomed. Mater. Res., Part A. 2013;101A(1):23–32. doi: 10.1002/jbm.a.34297. PubMed DOI
Jin K., Hu C., Hu S., Hu C., Li J., Ma H.. “One-to-three” droplet generation in digital microfluidics for parallel chemiluminescence immunoassays. Lab Chip. 2021;21(15):2892–2900. doi: 10.1039/D1LC00421B. PubMed DOI
Hsu W., Shih Y.-T., Lee M.-S., Huang H.-Y., Wu W.-N.. Bead Number Effect in a Magnetic-Beads-Based Digital Microfluidic Immunoassay. Biosensors. 2022;12:340. doi: 10.3390/bios12050340. PubMed DOI PMC
Jiang D., Qi R., Wu S., Li Y., Liu J.. Polyoxometalate functionalized magnetic metal–organic framework with multi-affinity sites for efficient enrichment of phosphopeptides. Anal. Bioanal. Chem. 2024;416(19):4289–4299. doi: 10.1007/s00216-024-05365-y. PubMed DOI
Zhang X., Wang B., Luo Y., Ding C.-F., Yan Y.. An amino-rich polymer-coated magnetic nanomaterial for ultra-rapid separation of phosphorylated peptides in the serum of Parkinson’s disease patients. Anal. Bioanal. Chem. 2024;416(14):3361–3371. doi: 10.1007/s00216-024-05287-9. PubMed DOI
de Souza Schwarz P., dos Santos B. P., Birk L., Eller S., de Oliveira T. F.. Development of an innovative analytical method for forensic detection of cocaine, antidepressants, and metabolites in postmortem blood using magnetic nanoparticles. Anal. Bioanal. Chem. 2024;416(13):3239–3250. doi: 10.1007/s00216-024-05273-1. PubMed DOI
Llandro J., Palfreyman J. J., Ionescu A., Barnes C. H. W.. Magnetic biosensor technologies for medical applications: a review. Medical & Biological Engineering & Computing. 2010;48(10):977–998. doi: 10.1007/s11517-010-0649-3. PubMed DOI
Grabarek Z., Gergely J.. Zero-length crosslinking procedure with the use of active esters. Anal. Biochem. 1990;185(1):131–135. doi: 10.1016/0003-2697(90)90267-D. PubMed DOI
Horstkotte B., Suárez R., Solich P., Cerdà V.. In-syringe-stirring: a novel approach for magnetic stirring-assisted dispersive liquid-liquid microextraction. Anal. Chim. Acta. 2013;788:52–60. doi: 10.1016/j.aca.2013.05.049. PubMed DOI
Maya F., Horstkotte B., Estela J. M., Cerdà V.. Lab in a syringe: fully automated dispersive liquid-liquid microextraction with integrated spectrophotometric detection. Anal. Bioanal. Chem. 2012;404(3):909–917. doi: 10.1007/s00216-012-6159-4. PubMed DOI
Horstkotte B., Solich P.. The Automation Technique Lab-In-Syringe: A Practical Guide. Molecules. 2020;25(7):1612. doi: 10.3390/molecules25071612. PubMed DOI PMC
Gemuh C. V., Horstkotte B., Solich P.. Lab-In-Syringe with Bead Injection Coupled Online to High-Performance Liquid Chromatography as Versatile Tool for Determination of Nonsteroidal Anti-Inflammatory Drugs in Surface Waters. Molecules. 2021;26(17):5358. doi: 10.3390/molecules26175358. PubMed DOI PMC
Suárez R., Horstkotte B., Cerdà V.. In-syringe magnetic stirring-assisted dispersive liquid-liquid microextraction for automation and downscaling of methylene blue active substances assay. Talanta. 2014;130:555–560. doi: 10.1016/j.talanta.2014.06.063. PubMed DOI
Gemuh C. V., Macháček M., Solich P., Horstkotte B.. Renewable sorbent dispersive solid phase extraction automated by Lab-In-Syringe using magnetite-functionalized hydrophilic-lipophilic balanced sorbent coupled online to HPLC for determination of surface water contaminants. Anal. Chim. Acta. 2022;1210:339874. doi: 10.1016/j.aca.2022.339874. PubMed DOI
Kasetsirikul S., Umer M., Soda N., Sreejith K. R., Shiddiky M. J., Nguyen N.-T.. Detection of the SARS-CoV-2 humanized antibody with paper-based ELISA. Analyst. 2020;145(23):7680–7686. doi: 10.1039/D0AN01609H. PubMed DOI
El-Daly M. M.. Advances and challenges in SARS-CoV-2 detection: a review of molecular and serological technologies. Diagnostics. 2024;14(5):519. doi: 10.3390/diagnostics14050519. PubMed DOI PMC
Sreejith K. R., Umer M., Dirr L., Bailly B., Guillon P., von Itzstein M., Soda N., Kasetsirikul S., Shiddiky M. J. A., Nguyen N.-T.. A Portable Device for LAMP Based Detection of SARS-CoV-2. Micromachines. 2021;12(10):1151. doi: 10.3390/mi12101151. PubMed DOI PMC
Matejkova N., Smela D., Beranek M., Capek J., Michalcova L., Michalkova L., Svoboda J., Skeren M., Svobodova Z., Sopha H.. et al. Open-channel microfluidic device for TiO2NTs@Fe3O4NPs-assisted viral RNA extraction and amplification-free RNA fluorescence status evaluation. Microchemical Journal. 2024;206:111554. doi: 10.1016/j.microc.2024.111554. DOI
Ramos I. I., Marques S. S., Magalhães L. M., Barreiros L., Reis S., Lima J. L. F. C., Segundo M. A.. Assessment of immunoglobulin capture in immobilized protein A through automatic bead injection. Talanta. 2019;204:542–547. doi: 10.1016/j.talanta.2019.06.023. PubMed DOI
Staros J. V., Wright R. W., Swingle D. M.. Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal. Biochem. 1986;156(1):220–222. doi: 10.1016/0003-2697(86)90176-4. PubMed DOI
Hacker S. M., Backus K. M., Lazear M. R., Forli S., Correia B. E., Cravatt B. F.. Global profiling of lysine reactivity and ligandability in the human proteome. Nat. Chem. 2017;9(12):1181–1190. doi: 10.1038/nchem.2826. PubMed DOI PMC
Agarwal P., Bertozzi C. R.. Site-specific antibody–drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjugate Chem. 2015;26(2):176–192. doi: 10.1021/bc5004982. PubMed DOI PMC