Background: In the last few decades, surgical techniques have been developed in thoracic surgery, and minimally invasive strategies such as multi-and uniportal video-assisted thoracic surgery (VATS) have become more favorable even for major pulmonary resections. With this surgical evolution, the aesthetic approach has also changed, and a paradigm shift has occurred. The traditional conception of general anesthesia, muscle relaxation, and intubation has been re-evaluated, and spontaneous breathing plays a central role in our practice by performing non-intubated thoracoscopic surgeries (NITS-VATS). Methods: We performed a computerized search of the medical literature (PubMed, Google Scholar, Scopus) to identify relevant articles in non-intubated thoracoscopic surgery using the following terms [(non-intubated) OR (non-intubated) OR (awake) OR (tubeless) OR (regional anesthesia)] AND [(VATS) OR (NIVATS)], as well as their Medical Subject Headings (MeSH) terms. Results: Based on the outcomes of the reviewed literature and our practice, it seems that pathophysiological concerns can be overcome by proper surgical and anesthetic management. All risks are compensated by the advantageous physiological changes that result in better patient outcomes. With the maintenance of spontaneous breathing, the incidence of potential adverse effects of mechanical ventilation, such as ventilator-induced lung injury and consequent postoperative pulmonary complications, can be reduced. The avoidance of muscle relaxants also results in the maintenance of contraction of the dependent hemidiaphragm and lower airway pressure levels, which may lead to better ventilation-perfusion matching. These techniques can be challenging for surgeons as well as for anesthetists; hence, a good knowledge of physiological and pathophysiological changes, clear inclusion and exclusion and intraoperative conversion criteria, and good communication between team members are essential. Conclusion: NITS-VATS seems to be a feasible and safe method in selected patients with evolving importance as a part of the minimally invasive surgical and anesthetic conception and has a role in reducing perioperative complications, which is crucial in the thoracic surgical patient population.
- Publication type
- Journal Article MeSH
- Review MeSH
About eight years ago, a new automation approach and flow technique called "Lab-In-Syringe" was proposed. It was derived from previous flow techniques, all based on handling reagent and sample solutions in a flow manifold. To date Lab-In-Syringe has evidently gained the interest of researchers in many countries, with new modifications, operation modes, and technical improvements still popping up. It has proven to be a versatile tool for the automation of sample preparation, particularly, liquid-phase microextraction approaches. This article aims to assist newcomers to this technique in system planning and setup by overviewing the different options for configurations, limitations, and feasible operations. This includes syringe orientation, in-syringe stirring modes, in-syringe detection, additional inlets, and addable features. The authors give also a chronological overview of technical milestones and a critical explanation on the potentials and shortcomings of this technique, calculations of characteristics, and tips and tricks on method development. Moreover, a comprehensive overview of the different operation modes of Lab-In-Syringe automated sample pretreatment is given focusing on the technical aspects and challenges of the related operations. We further deal with possibilities on how to fabricate required or useful system components, in particular by 3D printing technology, with over 20 different elements exemplarily shown. Finally, a short discussion on shortcomings and required improvements is given.
... Constant Fields 76 -- 5.3 Quantum Derivation of Precession 77 -- 5.4 Quantum Derivation of RF Spin Tipping ... ... -- 8 Introductory Signal Acquisition Methods: Free Induction Decay, Spin Echoes, Inversion Recovery, ... ... Multi-Slice 2D Imaging 195 -- 10.5 Chemical Shift Imaging 197 -- 10.5.1 A 2D-Spatial ID-Spectral Method ... ... 311 -- 14.4.3 Projection Slice Theorem and the Fourier Reconstruction Method 313 -- 14.4.4 Filtered ... ... for Spin Density and Ti Estimation 649 -- 22.4.1 The Look-Locker Method 650 -- 22.4.2 Ti Estimation ...
Second edition xxxii, 944 stran : ilustrace ; 29 cm
- Conspectus
- Patologie. Klinická medicína
- NML Fields
- radiologie, nukleární medicína a zobrazovací metody
- NML Publication type
- kolektivní monografie