Evaluation of Fine and Ultrafine Particles Proportion in Airborne Dust in an Industrial Area

. 2021 Aug 25 ; 18 (17) : . [epub] 20210825

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34501505

The health impacts of suspended particulate matter (SPM) are significantly associated with size-the smaller the aerosol particles, the stronger the biological effect. Quantitative evaluation of fine and ultrafine particles (FP and UFP) is, therefore, an integral part of ongoing epidemiological studies. The mass concentrations of SPM fractions (especially PM2.5, PM1.0, PM0.25) were measured in an industrial area using cascade personal samplers and a gravimetric method, and their mass ratio was determined. The results of PM2.5, PM1.0 were also compared with the reference measurement at stationary stations. The mean ratios PM2.5/SPM, PM1.0/SPM, and PM1.0/PM2.5 were 0.76, 0.65, and 0.86, respectively. Surprisingly, a mass dominance of UFP with an aerodynamic diameter <0.25 μm (PM0.25) was found with mean ratios of 0.43, 0.57, 0.67 in SPM, PM2.5 and PM1.0. The method used showed satisfactory agreement in comparison with reference measurements. The respirable fraction may consist predominantly of UFP. Despite the measures currently being taken to improve air quality, the most biologically efficient UFP can escape and remain in the air. UFP are currently determined primarily as particle number as opposed to the mass concentration used for conventional fractions. This complicates their mutual comparison and determination of individual fraction ratios.

Zobrazit více v PubMed

Air Quality—Particle Size Fraction Definitions for Health-Related Sampling. International Organization for Standardization; Geneva, Switzerland: 1995. [(accessed on 17 May 2021)]. (ISO Standard No. 7708:1995) Available online: https://www.iso.org/standard/14534.html.

World Health Organization . Review of Evidence on Health Aspects of Air Pollution—REVIHAAP Project: Technical Report. WHO Regional Office for Europe; Copenhagen, Denmark: 2016. [(accessed on 17 May 2021)]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK361805/ PubMed

Ohlwein S., Kappeler R., Joss M.K., Künzli N., Hoffmann B. Health effects of ultrafine particles: A systematic literature review update of epidemiological evidence. Int. J. Public Health. 2019;64:547–559. doi: 10.1007/s00038-019-01202-7. PubMed DOI

Chen H., Kwong J.C., Copes R., Hystad P., van Donkelaar A., Tu K., Brook J.R., Goldberg M.S., Martin R.V., Murray B.J., et al. Exposure to ambient air pollution and the incidence of dementia: A population-based cohort study. Environ. Int. 2017;108:271–277. doi: 10.1016/j.envint.2017.08.020. PubMed DOI

Peters R., Ee N., Peters J., Booth A., Mudway I., Anstey K.J. Air Pollution and Dementia: A Systematic Review. J. Alzheimer’s Dis. 2019;70:S145–S163. doi: 10.3233/JAD-180631. PubMed DOI PMC

Health Effects Institute . Understanding the Health Effects of Ambient Ultrafine Particles. Health Effects Institute; Boston, MA, USA: 2013. [(accessed on 17 May 2021)]. Available online: https://www.healtheffects.org/system/files/Perspectives3.pdf.

Utell M.J., Frampton M.W. Acute Health Effects of Ambient Air Pollution: The Ultrafine Particle Hypothesis. J. Aerosol Med. 2000;13:355–359. doi: 10.1089/jam.2000.13.355. PubMed DOI

Nel A., Xia T., Mädler L., Li N. Toxic potential of materials at the nanolevel. Science. 2006;311:622–627. doi: 10.1126/science.1114397. PubMed DOI

Valavanidis A., Fiotakis K., Vlachogianni T. Airborne Particulate Matter and Human Health: Toxicological Assessment and Importance of Size and Composition of Particles for Oxidative Damage and Carcinogenic Mechanisms. J. Environ. Sci. Heal. Part C. 2008;26:339–362. doi: 10.1080/10590500802494538. PubMed DOI

Alfaro-Moreno E., Garcia-Cuellar C., De-Vizcaya-Ruiz A., Rojas-Bracho L., Osornio-Vargas A. Air Pollution. CRC Press; Boca Raton, FL, USA: 2010. Cellular Mechanisms behind Particulate Matter Air Pollution–Related Health Effects; pp. 249–274.

European Environment Agency . Air quality in Europe—2019 report. Publications Office of the European Union; Luxemburg, Luxemburg: 2019. [(accessed on 17 May 2021)]. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2019.

Jirik V., Machaczka O., Miturová H., Tomasek I., Slachtova H., Janoutova J., Velicka H., Janout V. Air Pollution and Potential Health Risk in Ostrava Region—A Review. Cent. Eur. J. Public Health. 2016;24:S4–S17. doi: 10.21101/cejph.a4533. PubMed DOI

Tronville P., Rivers R. Developing parameters for multi-mode ambient air models including the nanometer mode. J. Phys. Conf. Ser. 2017;838:012036. doi: 10.1088/1742-6596/838/1/012036. DOI

Mainka A., Zajusz-Zubek E. PM1 in Ambient and Indoor Air—Urban and Rural Areas in the Upper Silesian Region, Poland. Atmosphere. 2019;10:662. doi: 10.3390/atmos10110662. DOI

Giorio C., Tapparo A., Scapellato M.L., Carrieri M., Apostoli P., Bartolucci G.B. Field comparison of a personal cascade impactor sampler, an optical particle counter and CEN-EU standard methods for PM10, PM2.5 and PM1 measurement in urban environment. J. Aerosol Sci. 2013;65:111–120. doi: 10.1016/j.jaerosci.2013.07.013. DOI

Thuy N.T.T., Dung N.T., Sekiguchi K., Thuy L.B., Hien N.T.T., Yamaguchi R. Mass Concentrations and Carbonaceous Compositions of PM0.1, PM2.5, and PM10 at Urban Locations of Hanoi, Vietnam. Aerosol Air Qual. Res. 2018;18:1591–1605. doi: 10.4209/aaqr.2017.11.0502. DOI

Workplace Atmospheres—Size Fraction Definitions for Measurement of Airborne Particles. European Committee for Standardization; Brussels, Belgium: 1993. [(accessed on 17 May 2021)]. (EN Standard No. 481:1993) Available online: https://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT,FSP_ORG_ID:4733,6119&cs=16545B98167A04A1ABA6364EC140AB024.

Workplace Exposure—Terminology. European Committee for Standardization; Brussels, Belgium: 2011. [(accessed on 17 May 2021)]. (EN Standard No. 1540:2011) Available online: https://shop.bsigroup.com/products/workplace-exposure-terminology?pid=000000000030217889.

Air Quality—Sampling Conventions for Airborne Particle Deposition in the Human Respiratory System. International Organization for Standardization; Geneva, Switzerland: 2012. [(accessed on 17 May 2021)]. (ISO Standard No. 13138:2012) Available online: https://www.iso.org/standard/53331.html.

Sources of pollution in 2019: District: Ostrava-město. Czech Hydrometeorological Institute: EMIS/Zdroje znečišťování za rok 2019: Okres: Ostrava-město. Český hydrometeorologický ústav: EMIS. [(accessed on 10 August 2021)]; Available online: https://www.chmi.cz/files/portal/docs/uoco/web_generator/plants/ostrava_mesto_CZ.html.

General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization/International Electrotechnical Commission; Geneva, Switzerland: 2017. [(accessed on 17 May 2021)]. (ISO/IEC Standard No. 17025:2017) Available online: https://www.iso.org/standard/66912.html.

Reimann C., Filzmoser P., Fabian K., Hron K., Birke M., Demetriades A., Dinelli E., Ladenberger A. The concept of compositional data analysis in practice—Total major element concentrations in agricultural and grazing land soils of Europe. Sci. Total Environ. 2012;426:196–210. doi: 10.1016/j.scitotenv.2012.02.032. PubMed DOI

Aitchison J. The one-hour course in compositional data analysis or compositional data analysis is easy; Proceedings of the Third Annual Conference of the International Association for Mathematical Geology; Barcelona, Spain. 22–27 September 1997; pp. 3–35.

Ambient Air—Standard Gravimetric Measurement Method for The Determination of the PM10 or PM2.5 Mass Concentration of Suspended Particulate Matter. European Committee for Standardization; Brussels, Belgium: 2014. [(accessed on 17 May 2021)]. (EN Standard No. 12341:2014) Available online: https://www.en-standard.eu/csn-en-12341-ambient-air-standard-gravimetric-measurement-method-for-the-determination-of-the-pm10-or-pm2-5-mass-concentration-of-suspended-particulate-matter/

Salvador P., Almeida S.M., Cardoso J., Almeida-Silva M., Nunes T., Cerqueira M., Alves C., Reis M.A., Chaves P.C., Artíñano B., et al. Composition and origin of PM 10 in Cape Verde: Characterization of long-range transport episodes. Atmos. Environ. 2016;127:326–339. doi: 10.1016/j.atmosenv.2015.12.057. DOI

Li Y., Zheng C., Ma Z., Quan W. Acute and Cumulative Effects of Haze Fine Particles on Mortality and the Seasonal Characteristics in Beijing, China, 2005–2013: A Time-Stratified Case-Crossover Study. Int. J. Environ. Res. Public Health. 2019;16:2383. doi: 10.3390/ijerph16132383. PubMed DOI PMC

Meng X., Wu Y., Pan Z., Wang H., Yin G., Zhao H. Seasonal Characteristics and Particle-size Distributions of Particulate Air Pollutants in Urumqi. Int. J. Environ. Res. Public Health. 2019;16:396. doi: 10.3390/ijerph16030396. PubMed DOI PMC

Wang K., Wang W., Li L., Li J., Wei L., Chi W., Hong L., Zhao Q., Jiang J. Seasonal concentration distribution of PM1.0 and PM2.5 and a risk assessment of bound trace metals in Harbin, China: Effect of the species distribution of heavy metals and heat supply. Sci. Rep. 2020;10:8160. doi: 10.1038/s41598-020-65187-7. PubMed DOI PMC

Kelly F.J., Fussell J.C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 2012;60:504–526. doi: 10.1016/j.atmosenv.2012.06.039. DOI

Oberdörster G., Oberdörster E., Oberdörster J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ. Health Perspect. 2005;113:823–839. doi: 10.1289/ehp.7339. PubMed DOI PMC

Binkova B., Topinka J., Sram R.J., Sevastyanova O., Novakova Z., Schmuczerova J., Kalina I., Popov T., Farmer P.B. In vitro genotoxicity of PAH mixtures and organic extract from urban air particles. Mutat. Res. Mol. Mech. Mutagen. 2007;620:114–122. doi: 10.1016/j.mrfmmm.2007.03.001. PubMed DOI

Lewtas J. Air pollution combustion emissions: Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat. Res. Rew. Mutat. Res. 2007;636:95–133. doi: 10.1016/j.mrrev.2007.08.003. PubMed DOI

Topinka J., Schwarz L., Wiebel F., Černá M., Wolff T. Genotoxicity of urban air pollutants in the Czech Republic. Mutat. Res. Toxicol. Environ. Mutagen. 2000;469:83–93. doi: 10.1016/S1383-5718(00)00061-9. PubMed DOI

Schraufnagel D.E. The health effects of ultrafine particles. Exp. Mol. Med. 2020;52:311–317. doi: 10.1038/s12276-020-0403-3. PubMed DOI PMC

Morawska L., Ristovski Z., Jayaratne E.R., Keogh D.U., Ling X. Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure. Atmos. Environ. 2008;42:8113–8138. doi: 10.1016/j.atmosenv.2008.07.050. DOI

Kotlik B., Pekarova L., Kazmarova H., Mikesova M., Vrbikova V., Mateju L., Vandasova Z. Air quality measurement in kindergartens. Hygiena. 2018;63:36–44. doi: 10.21101/hygiena.a1610. DOI

Bergin M.S., Russell A.G., Yang Y.J., Milford J.B., Kirchner F., Stockwell W.R. Effects of Uncertainty in SAPRC90 Rate Constants and Selected Product Yields on Reactivity Adjustment Factors for Alter-native Fuel Vehicle Emissions, Final Report. National Renewable Energy Lab (NREL); Denver, CO, USA: 1996. p. 98. Technical Report No. NREL/TP-425-7636.

Laurent O., Hu J., Li L., Kleeman M.J., Bartell S.M., Cockburn M., Escobedo L., Wu J. A Statewide Nested Case–Control Study of Preterm Birth and Air Pollution by Source and Composition: California, 2001–2008. Environ. Health Perspect. 2016;124:1479–1486. doi: 10.1289/ehp.1510133. PubMed DOI PMC

Ostro B., Hu J., Goldberg D., Reynolds P., Hertz A., Bernstein L., Kleeman M.J. Associations of mortality with long-term exposures to fine and ultrafine particles, species and sources: Results from the California teachers study Cohort. Environ. Health Perspect. 2015;123:549–556. doi: 10.1289/ehp.1408565. PubMed DOI PMC

Kuwayama T., Ruehl C.R., Kleeman M.J. Daily Trends and Source Apportionment of Ultrafine Particulate Mass (PM 0.1) over an Annual Cycle in a Typical California City. Environ. Sci. Technol. 2013;47:13957–13966. doi: 10.1021/es403235c. PubMed DOI

Venecek M.A., Yu X., Kleeman M.J. Predicted ultrafine particulate matter source contribution across the continental United States during summertime air pollution events. Atmos. Chem. Phys. 2019;19:9399–9412. doi: 10.5194/acp-19-9399-2019. DOI

Sioutas C., Delfino R.J., Singh M. Exposure Assessment for Atmospheric Ultrafine Particles (UFPs) and Implications in Epidemiologic Research. Environ. Health Perspect. 2005;113:947–955. doi: 10.1289/ehp.7939. PubMed DOI PMC

Li N., Sioutas C., Cho A., Schmitz D., Misra C., Sempf J., Wang M., Oberley T., Froines J., Nel A. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 2003;111:455–460. doi: 10.1289/ehp.6000. PubMed DOI PMC

Li N., Georas S., Alexis N., Fritz P., Xia T., Williams M.A., Horner E., Nel A. A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J. Allergy Clin. Immunol. 2016;138:386–396. doi: 10.1016/j.jaci.2016.02.023. PubMed DOI PMC

Frank B., Schuster M.E., Schlögl R., Su D.S. Emission of Highly Activated Soot Particulate-The Other Side of the Coin with Modern Diesel Engines. Angew. Chemie Int. Ed. 2013;52:2673–2677. doi: 10.1002/anie.201206093. PubMed DOI

Park B., Donaldson K., Duffin R., Tran L., Kelly F., Mudway I., Morin J.-P., Guest R., Jenkinson P., Samaras Z., et al. Hazard and Risk Assessment of a Nanoparticulate Cerium Oxide-Based Diesel Fuel Additive—A Case Study. Inhal. Toxicol. 2008;20:547–566. doi: 10.1080/08958370801915309. PubMed DOI

Kumar P., Choudhary A., Singh A.K., Prasad R., Shukla A. Temporal Variation of Atmospheric Aerosols and Associated Optical and Metrological Parameters; Proceedings of the 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), IEEE; New Delhi, India. 9–15 March 2019; pp. 1–3.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...