Acridine derivatives as inhibitors/poisons of topoisomerase II
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
34514603
DOI
10.1002/jat.4238
Knihovny.cz E-resources
- Keywords
- acridine derivatives, anticancer, topoisomerase II inhibition activity,
- MeSH
- Acridines pharmacology MeSH
- Amsacrine MeSH
- DNA Topoisomerases, Type II MeSH
- Poisons * MeSH
- Antineoplastic Agents * pharmacology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Acridines MeSH
- Amsacrine MeSH
- DNA Topoisomerases, Type II MeSH
- Poisons * MeSH
- Antineoplastic Agents * MeSH
The potential of acridines (amsacrine) as a topoisomerase II inhibitor or poison was first discovered in 1984, and since then, a considerable number of acridine derivatives have been tested as topoisomerase inhibitors/poisons, containing different substituents on the acridine chromophore. This review will discuss a series of studies published over the course of the last decade, which have investigated various novel acridine derivatives against topoisomerase II activity.
See more in PubMed
Austin, C. A., Lee, K. C., Swan, R. L., Khazeem, M. M., Manville, C. M., Cridland, P., Treumann, A., Porter, A., Morris, N. J., & Cowell, I. G. (2018). TOP2B: The first thirty years. International Journal of Molecular Sciences, 19(9), 2765. https://doi.org/10.3390/ijms19092765
Baguley, B. C., Drummond, C. J., Chen, Y. Y., & Finlay, G. J. (2021). DNA-binding anticancer drugs: One target, two actions. Molecules, 26, 552. https://doi.org/10.3390/molecules26030552
Bollimpelli, V. S., Dholaniya, P. S., & Kondapi, A. K. (2017). Topoisomerase IIβ and its role in different biological contexts. Archives of Biochemistry and Biophysics, 633, 78-84. https://doi.org/10.1016/j.abb.2017.06.021
Buzun, K., Bielawska, A., Bielawski, K., & Gornowicz, A. (2020). DNA topoisomerases as molecular targets for anticancer drugs. Enzyme Inhibition and Medicinal Chemistry, 35(1), 1781-1799. https://doi.org/10.1080/14756366.2020.1821676
Cuya, S. M., Bjornsti, M.-A., & van Waardenburg, R. C. A. M. (2017). DNA topoisomerase-targeting chemotherapeutics: What's new? Cancer Chemotherapy and Pharmacology, 80(1), 1-14. https://doi.org/10.1007/s00280-017-3334-5
da Silva Filho, F. A., de Freitas Souza, T., Ribeiro, A. G., Alves, J. E. F., de Oliveira, J. F., de Lima Souza, T. R. C., de Moura, R. O., do Carmo Alves de Lima, M., de Carvalho Junior, L. B., & de Almeida, S. M. V. (2019). Topoisomerase inhibition and albumin interaction studies of acridine-thiosemicarbazone derivatives. International Journal of Biological Macromolecules., 138, 582-589. https://doi.org/10.1016/j.ijbiomac.2019.07.097
de Almeida, S. M. V., Lafayette, E. A., Silva, W. L., de Lima Serafim, V., Menezes, T. M., Neves, J. L., Ruiz, A. L., de Carvalho, J. E., de Moura, R. O., Beltrão, E. I. C., de Carvalho, L. B. Jr., Alves de Lima, M. D., & Alves de Lima, M. C. (2016). New spiro-acridines: DNA interaction, antiproliferative activity and inhibition of human DNA topoisomerases. International Journal of Biological Macromolecules, 92, 467-475. https://doi.org/10.1016/j.ijbiomac.2016.07.057
de Almeida, S. M. V., Ribeiro, A. G., Silva, G. C. D. L., Ferreira Alves, J. E., Beltrão, E. I. C., de Oliveira, J. F., de Carvalho, L. B. Jr., & Alves de Lima, M. D. (2017). DNA binding and topoisomerase inhibition: How can these mechanisms be explored to design more specific anticancer agents? Biomedicinal Pharmacotheraphy, 96, 1538-1556. https://doi.org/10.1016/j.biopha.2017.11.054
Delgado, J. L., Hsieh, C.-M., Chan, N.-L., & Hiasa, H. (2018). Topoisomerases as anticancer targets. Biochemistry Journal, 23(475), 373-398. https://doi.org/10.1042/BCJ20160583
Deweese, J. E., Osheroff, M. A., & Osheroff, N. (2009). DNA topology and topoisomerases. Biochemistry and Molecular Biology Education, 37(1), 2-10. https://doi.org/10.1093/nar/gkn937
Errington, F., Willmore, E., Tilby, M. J., Li, L., Li, G., Li, W., Baguley, B. C., & Austin, C. A. (1999). Murine transgenic cells lacking DNA topoisomerase IIβ are resistant to acridines and mitoxantrone: Analysis of cytotoxicity and cleavable complex formation. Molecular Pharmacology, 56(6), 1309-1316. https://doi.org/10.1124/mol.56.6.1309
Ferguson, D. M., Jacobson, B. A., Jay-Dixon, J., Patel, M. R., Kratzke, R. A., & Raza, A. (2015). Targeting topoisomerase II activity in NSCLC with 9-aminoacridine derivatives. Anticancer Research, 35, 5211-5218.
Fortune, J. M., & Osheroff, N. (2000). Topoisomerase II as a target for anticancer drugs: When enzymes stop being nice. Progress in Nucleic Acid Research and Molecular Biology, 64, 221-253. https://doi.org/10.1016/s0079-6603(00)64006-0
Gouveira, R. G., Ribeiro, A. G., Segundo, M. A. S. P., de Oliveira, J. F., de Lima, M. D. A., Souza, T. R. C. D., de Almeida, S. M. V., & de Moura, R. O. (2018). Synthesis, DNA and protein interactions and human topoisomerase inhibition of novel spiroacridine derivatives. Bioorganic & Medicinal Chemistry, 26(22), 5759-5986. https://doi.org/10.1016/j.bmc.2018.10.038
Hande, K. R. (2008). Topoisomerase II inhibitors. Update on Cancer Therapeutics, 3, 13-26. https://doi.org/10.1016/j.uct.2008.02.001
Hu, W., Huang, X.-S., Wu, J.-F., Yang, L., Zheng, Y.-T., Shen, Y.-M., Li, Z. Y., & Li, X. (2018). Discovery of novel topoisomerase II inhibitors by medicinal chemistry approaches. Journal of Medicinal Chemistry, 61(20), 8947-8980. https://doi.org/10.1021/acs.jmedchem.7b01202
Janočkova, J., Korabecny, J., Plšíková, J., Babkova, K., Konkolova, E., Kucerova, D., Vargova, J., Koval, J., Jendzelovsky, R., Fedorocko, P., Kasparkova, J., Brabec, V., Rosocha, J., Soukup, O., Hamulakova, S., Kuca, K., & Kozurkova, M. (2019). In vitro investigating of anticancer activity of new 7-MEOTA-tacrine heterodimers. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 877-897. https://doi.org/10.1080/14756366.2019.1593159
Janočková, J., Plšíková, J., Kasparkova, J., Brabec, V., Jendželovský, R., Mikeš, J., Kovaľ, J., Hamuľaková, S., Fedoročko, P., Kuča, K., & Kozurkova, M. (2015). Inhibition of DNA topoisomerases I and II and growth inhibition of HL-60 cells by novel acridine-based compounds. European Journal of Pharmaceutical Sciences, 30(76), 192-202. https://doi.org/10.1016/j.ejps.2015.04.023
Janočková, J., Plšíková, J., Kovaľ, J., Jendželovský, R., Mikeš, J., Kasparkova, J., Brabec, V., Hamuľaková, S., Fedoročko, P., & Kozurkova, M. (2015). Tacrine derivatives as dual topoisomerase I and II catalytic inhibitors. Bioorganic Chemistry, 59, 168-176. https://doi.org/10.1016/j.bioorg.2015.03.002
Janočkova, J., Plšíková, J., Kučerová, D., Kovaľ, J., Jendželovský, R., Korábečný, J., Kuca, K., Slavka, H., Fedoročko, P., & Kožurková, M. (2015). Inhibition of DNA-topoisomerase I/II activity with selected bistacrine-thiourea/urea derivatives and their biological effect. FEBS Journal, 282, 141. https://doi.org/10.1111/febs.13339
Kathiravan, M. K., Kale, A. N., & Nilewar, S. (2016). Discovery and development of topoisomerase inhibitors as anticancer drugs. Mini Review in Medicinal Chemistry, 16(15), 1219-1229. https://doi.org/10.2174/1389557516666160822110819
Kathiravan, M. K., Khilare, M. M., Nikoomanesh, K., Chothe, A. S., & Jain, K. S. (2013). Topoisomerase as target for antibacterial and anticancer drug discovery. Journal of Enzyme Inhibition and Medicinal Chemistry, 28(3), 419-435. https://doi.org/10.3109/14756366.2012.658785
Ketron, A. C., Denny, W. A., Graves, D. E., & Osheroff, N. (2012). Amsacrine as a topoisomerase II poison importance of drug-DNA interactions. Biochemistry, 51(8), 1730-1739. https://doi.org/10.1021/bi201159b
Konkoľová, E., Hudáčová, M., Hamuľaková, S., Jendželovský, R., Vargová, J., Ševc, J., Fedoročko, P., & Kožurková, M. (2021). Tacrine-coumarin derivatives as topoisomerase inhibitors with antitumor effects on A549 human lung carcinoma cancer cell lines. Molecules, 26, 1133. https://doi.org/10.3390/molecules26041133
Kožurková, M., Sabolová, D., & Kristian, P. (2017). A review on acridinylthioureas and its derivatives: Biological and cytotoxic activity. Journal of Applied Toxicology, 37, 1132-1139. https://doi.org/10.1002/jat.3464
Lara, L. I., Sledge, A., Laradji, A., Okoro, C. O., & Osheroff, N. (2017). Novel trifluoromethylated 9-amino-3,4-dihydroacridin-1(2H)-ones act as covalent poisons of human topoisomerase IIα. Bioorganic and Medicinal Chemistry Letters, 27(3), 586-589. https://doi.org/10.1016/j.bmcl.2016.12.011
Li, D., Yuan, Z., Chen, S., Zhang, C., Song, L., Gao, C., Chen, Y., Tan, C., & Jiang, Z. (2017). Synthesis and biological research of novel azaacridine derivatives as potent DNA-binding ligands and topoisomerase II inhibitors. Bioorganic and Medicinal Chemistry, 25(13), 3437-3446. https://doi.org/10.1016/j.bmc.2017.04.030
Liang, X., Wu, Q., Luan, S., Yin, Z., He, C., Yin, L., Zou, Y., Yuan, Z., Li, L., Song, X., He, M., Lv, C., & Zhang, W. (2019). A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. European Journal of Medicinal Chemistry, 1(171), 129-168. https://doi.org/10.1016/j.ejmech.2019.03.034
McClendon, A. K., Rodriguez, A. C., & Osheroff, N. (2005). Human topoisomerase IIα rapidly relaxes positively supercoiled DNA: Implications for enzyme action ahead of replication forks. Journal of Biological Chemistry, 280, 39337-39345. https://doi.org/10.1074/jbc.M503320200
McKie, S. J., Neuman, K. C., & Maxwell, A. (2021). DNA topoisomerases: Advances in understanding of cellular roles and multi-protein complexes via structure-function analysis. BioEssays, 43, 2000286. https://doi.org/10.1002/bies.202000286
Muhammad, H. N., Damayanti, S., & Tjahjono, D. H. (2020). Porphyrin-acridine hybrid compounds as potential candidates for topoisomerase II alpha inhibitors. Chiang Mai Journal of Science, 47(3), 455-472. https://doi.org/10.2991/iccst-15.2015.5
Nielsen, C. F., Zhang, T., Barisic, M., Kalitsis, P., & Hudson, D. F. (2020). Topoisomerase IIα is essential for maintenance of mitotic chromosome structure. PNAS, 117(22), 12131-12142. https://doi.org/10.1073/pnas.2001760117
Nitiss, J. L. (2009). Targeting DNA topoisomerase II in cancer chemotherapy. Nature Review Cancer, 9(5), 338-350. https://doi.org/10.1038/nrc2607
Nunhart, P., Konkoľová, E., Janovec, L., Jendželovský, R., Vargová, J., Ševc, J., Matejová, M., Miltáková, B., Fedoročko, P., & Kozurkova, M. (2020). Fluorinated 3,6,9-trisubstituted acridine derivatives as DNA interacting agents and topoisomerase inhibitors with A549 antiproliferative activity. Bioorganic Chemistry, 94, 103393. https://doi.org/10.1016/j.bioorg.2019.103393
Panchal, N. B., Patel, P. H., Chhipa, N. M., & Pamar, R. S. (2020). Acridine a versatile heterocyclic moiety as anticancer agent. International Journal of Pharmaceutical Sciences and Research, 11(10), 4739-4748. https://doi.org/10.13040/IJPSR.0975-8232.11(10).4739-48
Pommier, Y., Sun, Y., Huang, S. N., & Nitiss, J. L. (2016). Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nature Reviews Molecular Cell Biology, 17, 703-721. https://doi.org/10.1038/nrm.2016.111
Raza, A., Jacobson, B. A., Patel, M. R., Benoit, A., Jay-Dixon, J., Ferguson, D. M., & Kratzke, R. A. (2011). The effect of novel acridine-based agents with topoisomerase II inhibitor on mesothelioma cell proliferation and apoptosis. Journal of Clinical Oncology, 29(15), e13507. https://doi.org/10.1200/jco.2011.29.15_suppl.e13507
Raza, A., Jacobson, B. A., Patel, M. R., Jay-Dixon, J., Hiasa, H., Ferguson, D. M., & Kratzke, R. A. (2012). Novel acridine-based agents with topoisomerase II inhibitor activity suppress mesothelioma cell proliferation and induce apoptosis. Investigational New Drugs, 30(4), 144-1448. https://doi.org/10.1007/s10637-011-9720-7
Rogojina, A., Gajewski, S., Bahmed, K., Osheroff, N., & Nitiss, J. L. (2012). Topoisomerase II inhibitors: Chemical biology. In Y. Pomier (Ed.), DNA topoisomerase and cancer (pp. 211-243). Springer.
Rupar, J. S., Dobricic, V. D., Aleksic, M. M., Brboric, J. S., & Cudina, O. A. (2018). A review of published data on acridine derivatives with different biological activities. Kragujevac Journal of Science, 40, 83-101.
Sakaguchi, A., & Kikuchi, A. (2004). Functional compatibility between isoform alpha and beta of type II DNA topoisomerase. Journal Cell Science, 117(7), 1047-1054. https://doi.org/10.1242/jcs.00977
Salem, O. M., Vilková, M., Janočkova, J., Jendželovský, R., Fedoročko, P., Žilecká, E., Kašpárková, J., Brabec, V., Imrich, J., & Kozurkova, M. (2016). New spiro tria(thia)zolidine-acridines as topoisomerase inhibitors, DNA binders and cytostatic compounds. International Journal of Biological Macromolecules, 86, 690-700. https://doi.org/10.1016/j.ijbiomac.2016.02.018
Skok, Ž., Zidar, N., Kikelj, D., & Ilaš, J. (2020). Dual inhibitors of human DNA topoisomerase II and other cancer-related targets. Journal of Medicinal Chemistry, 63, 884-904. https://doi.org/10.1021/acs.jmedchem.9b00726
Vispe, S., Vandenberghe, I., Robin, M., Annereau, L. J. P., Pique, C. V., Galy, J. P., Kruczynski, A., Barret, J. M., & Bailly, C. (2007). Novel tetra-acridine derivatives as dual inhibitors of topoisomerase II and the human proteasome. Biochemical Pharmacology, 73, 1863-1872. https://doi.org/10.1016/j.bcp.2007.02.016
You, F., & Gao, C. (2019). Topoisomerase inhibitors and targeted delivery in cancer therapy. Current Topics in Medicinal Chemistry, 19(9), 713-729. https://doi.org/10.2174/1568026619666190401112948
Zhang, B., Dou, Z., Xiong, Z., Wang, N., He, S., Yan, X., & Jin, H. (2019). Design, synthesis and biological research of novel N-phenylbenzamide-4-methylamine acridine derivatives as potential topoisomerase I/II and apoptosis-inducing agents. Bioorganic & Medicinal Chemistry Letters, 29(23), 12714. https://doi.org/10.1016/j.bmcl.2019.126714
Zhang, W., Zhang, B., Zhang, W., Yang, T., Wang, N., Gao, C., Tan, C., Liu, H., & Jiang, Y. (2016). Synthesis and antiproliferative activity of 9-benzylamino-6-chloro-2-methoxy-acridine derivatives as potent DNA-binding ligands and topoisomerase II inhibitors. European Journal of Medicine Chemistry, 116, 59-70. https://doi.org/10.1016/j.ejmech.2016.03.066