Giant Tree Frog diversification in West and Central Africa: Isolation by physical barriers, climate, and reproductive traits
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
34516675
DOI
10.1111/mec.16169
Knihovny.cz E-zdroje
- Klíčová slova
- demographic modelling, divergence, ecological niche, land-bridge island, phylogeography, refugia,
- MeSH
- biodiverzita * MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- genetická variace MeSH
- lesy MeSH
- mitochondriální DNA genetika MeSH
- Ranidae genetika MeSH
- žáby * genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- střední Afrika MeSH
- Názvy látek
- mitochondriální DNA MeSH
Secondary sympatry amongst sister lineages is strongly associated with genetic and ecological divergence. This pattern suggests that for closely related species to coexist in secondary sympatry, they must accumulate differences in traits that mediate ecological and/or reproductive isolation. Here, we characterized inter- and intraspecific divergence in three giant tree frog species whose distributions stretch across West and Central Africa. Using genome-wide single-nucleotide polymorphism data, we demonstrated that species-level divergence coincides temporally and geographically with a period of large-scale forest fragmentation during the late Pliocene. Our environmental niche models further supported a dynamic history of climatic suitability and stability, and indicated that all three species occupy distinct environmental niches. We found modest morphological differentiation amongst the species with significant divergence in tympanum diameter and male advertisement call. In addition, we confirmed that two species occur in secondary sympatry in Central Africa but found no evidence of hybridization. These patterns support the hypothesis that cycles of genetic exchange and isolation across West and Central Africa have contributed to globally significant biodiversity. Furthermore, divergence in both ecology and reproductive traits appear to have played important roles in maintaining distinct lineages. At the intraspecific level, we found that climatic refugia, precipitation gradients, marine incursions, and potentially riverine barriers generated phylogeographic structure throughout the Pleistocene and into the Holocene. Further studies examining phenotypic divergence and secondary contact amongst these geographically structured populations may demonstrate how smaller scale and more recent biogeographic barriers contribute to regional diversification.
La sympatrie secondaire parmi les espèces sœurs est fortement associée à la divergence génétique et écologique. Ce modèle suggère que pour que des espèces étroitement liées coexistent en sympatrie secondaire, elles doivent accumuler des différences dans les traits qui contribuent à l'isolement écologique ou reproductif. Ici, nous avons caractérisé la divergence inter- et intra-spécifique chez trois espèces de grenouilles arboricoles géantes dont les distributions s'étendent à travers l'Afrique de l'Ouest et Centrale. Avec des données génétiques, nous avons démontré que la divergence au niveau des espèces coïncide temporellement et géographiquement avec une période de fragmentation forestière à la fin du Pliocène. Nos modèles de niches environnementales ont soutenu une histoire dynamique de stabilité climatique, et ont indiqué que les trois espèces occupent des niches environnementales distinctes. Nous avons trouvé une différenciation morphologique modeste parmi les trois espèces mais une divergence significative dans le diamètre du tympan et les cris des mâles. De plus, nous avons confirmé que deux espèces sont présentes en sympatrie secondaire en Afrique Centrale mais n'avons trouvé aucune preuve d'hybridation. Ces résultats soutiennent l'hypothèse que les cycles d'échange génétique et d'isolement à travers l'Afrique de l'Ouest et Centrale ont contribué à une profonde concentration de biodiversité dans la région. De plus, la divergence des traits écologiques et reproducteurs semble avoir joué un rôle important dans le maintien de lignées distinctes. Au niveau intra-spécifique, nous avons constaté que les refuges climatiques, les gradients de précipitation, les incursions marines et potentiellement les barrières fluviales ont généré une structure phylogéographique pendant le Pléistocène et jusqu'à l'Holocène. Des études examinant la divergence phénotypique et le contact secondaire entre ces populations géographiquement structurées pourraient démontrer comment des barrières biogéographiques à échelle plus petite et plus récentes contribuent à la diversification régionale.
Bioko Biodiversity Protection Project Drexel University Philadelphia Pennsylvania USA
Chair of Wildlife Ecology and Wildlife Management University of Freiburg Freiburg Germany
Department of Biological Sciences University of Texas at El Paso El Paso Texas USA
Department of Biology Adrian College Michigan USA
Department of Biology University of Florida Florida USA
Department of Ecology and Evolutionary Biology Princeton University New Jersey USA
Department of Zoology Faculty of Science University of Lagos Lagos Nigeria
Department of Zoology National Museum Prague Czech Republic
Ecology Evolution and Behavior Program Michigan State University Michigan USA
Faculdade de Ciências da Universidade do Porto Porto Portugal
Fundação Kissama Luanda Angola
Gabon Biodiversity Program Smithsonian Conservation Biology Institute Gamba Gabon
Institut National de Recherche en Sciences Exactes et Naturelles Brazzaville République du Congo
Institute de Recherches Agronomiques et Forestières Libreville Gabon
Institute of Conservation Science and Learning Bristol Zoological Society Bristol UK
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic
Instituto Superior de Ciências da Educação da Huíla Rua Sarmento Rodrigues Lubango Angola
Leibniz Institute for Evolution and Biodiversity Science Museum für Naturkunde Berlin Germany
Museum of Zoology Senckenberg Natural History Collections Dresden Dresden Germany
School of Natural Resources and Environment University of Florida Florida USA
Section of Research and Collections North Carolina Museum of Natural Sciences North Carolina USA
Zobrazit více v PubMed
Ahl, E. (1929). Zur Kenntnis der afrikanischen Baumfrosch-Gattung Leptopelis. Sitzungsberichte Der Gesellschaft Naturforschender Freunde Zu Berlin, 1929, 185-222.
Ahl, E. (1931). Anura III, Polypedatidae. Das Tierreich, 55, 1-477.
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541-545. https://doi.org/10.1111/ecog.01132
Allen, K. E., Greenbaum, E., Hime, P. M., Tapondjou N., W. P., Sterkhova, V. V., Kusamba, C., Rödel, M.-O., Penner, J., Peterson, A. T., & Brown, R. M. (2021). Rivers, not refugia, drove diversification in arboreal, sub-Saharan African snakes. Ecology and Evolution, 11, 6133-6152. https://doi.org/10.1002/ece3.7429
Amiet, J. L. (2012). Les Rainettes du Cameroun (Amphibiens Anoures). Nyons & Saint Nazaire, Édition J.-L. Amiet & La Nef des Livres.
Amiet, J.-L., & Goutte, S. (2017). Chants d’Amphibiens du Cameroun. Nyons & Saint Nazaire, J.-L. Amiet & Éditions Petit Génie.
Amiet, J.-L., & Schiøtz, A. (1974). Voix d'Amphibiens camerounais III. Hyperoliidae: genre Leptopelis. Annales De La Faculté Des Sciences Du Cameroun, 17, 131-163.
Bell, R. C., McLaughlin, P. J., Jongsma, G. F. M., Blackburn, D. C., & Stuart, B. L. (2019). Morphological and genetic variation of Leptopelis brevirostris encompasses the little-known treefrogs Leptopelis crystallinoron from Gabon and Leptopelis brevipes from Bioko Island. Equatorial Guinea. African Journal of Herpetology, 68(2), 91-117.
Bell, R. C., Parra, J. L., Badjedjea, G., Barej, M. F., Blackburn, D. C., Burger, M., Channing, A., Dehling, J. M., Greenbaum, E., Gvoždík, V., Kielgast, J., Kusamba, C., Lötters, S., McLaughlin, P. J., Nagy, Z. T., Rödel, M.-O., Portik, D. M., Stuart, B. L., VanDerWal, J., … Zamudio, K. R. (2017). Idiosyncratic responses to climate-driven forest fragmentation and marine incursions in reed frogs from Central Africa and the Gulf of Guinea Islands. Molecular Ecology, 26(19), 5223-5244. https://doi.org/10.1111/mec.14260
Bohoussou, K. H., Cornette, R., Akpatou, B., Colyn, M., Peterhans, J. K., Kennis, J., & Nicolas, V. (2015). The phylogeography of the rodent genus Malacomys suggests multiple Afrotropical Pleistocene lowland forest refugia. Journal of Biogeography, 42(11), 2049-2061.
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
Bonnefille, R. (2010). Cenozoic vegetation, climate changes, and hominid evolution in tropical Africa. Global and Planetary Change, 72(4), 390-411. https://doi.org/10.1016/j.gloplacha.2010.01.015
Booth, A. H. (1958). The Niger, the Volta, and the Dahomey Gap as geographic barriers. Evolution, 12(1), 48-62. https://doi.org/10.1111/j.1558-5646.1958.tb02927.x
Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M. A., Rambaut, A., & Drummond, A. J. (2014). BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Biology, 10(4), e1003537. https://doi.org/10.1371/journal.pcbi.1003537
Boul, K. E., Funk, C. W., Darst, C. R., Cannatella, D. C., & Ryan, M. J. (2006). Sexual selection drives speciation in an Amazonian frog. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 399-406.
Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., Thuiller, W., Fortin, M.-J., Randin, C., Zimmermann, N. E., Graham, C. H., & Guisan, A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21(4), 481-497. https://doi.org/10.1111/j.1466-8238.2011.00698.x
Bryant, D., Bouckaert, R., Felsenstein, J., Rosenberg, N. A., & RoyChoudhury, A. (2012). Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Molecular Biology and Evolution, 29(8), 1917-1932. https://doi.org/10.1093/molbev/mss086
Channing, A., & Rödel, M. O. (2019). Field guide to the frogs and other amphibians of Africa. Struik Nature.
Charles, K. L., Bell, R. C., Blackburn, D. C., Burger, M., Fujita, M. K., Gvoždík, V., Jongsma, G. F. M., Kouete, M. T., Leaché, A. D., & Portik, D. M. (2018). Sky, sea, and forest islands: Diversification in the African leaf-folding frog Afrixalus paradorsalis (Anura: Hyperoliidae) of the Lower Guineo-Congolian rain forest. Journal of Biogeography, 45(8), 1781-1794. https://doi.org/10.1111/jbi.13365
Couvreur, T. L. P., Dauby, G., Blach-Overgaard, A., Deblauwe, V., Dessein, S., Droissart, V., Hardy, O. J., Harris, D. J., Janssens, S. B., Ley, A. C., Mackinder, B. A., Sonké, B., Sosef, M. S. M., Stévart, T., Svenning, J.-C., Wieringa, J. J., Faye, A., Missoup, A. D., Tolley, K. A., … Sepulchre, P. (2021). Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biological Reviews, 96, 16-51. https://doi.org/10.1111/brv.12644
Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., & Durbin, R. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156-2158. https://doi.org/10.1093/bioinformatics/btr330
Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772. https://doi.org/10.1038/nmeth.2109
de Medeiros, B. A. (2019) Matrix Condenser v.1.0. Available at: https://github.com/brunoasm/matrix_condenser/
Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969-1973. https://doi.org/10.1093/molbev/mss075
Dupont, L. M., Jahns, S., Marret, F., & Ning, S. (2000). Vegetation change in equatorial West Africa: time-slices for the last 150 ka. Palaeogeography, Palaeoclimatology, Palaeoecology, 155(1-2), 95-122. https://doi.org/10.1016/S0031-0182(99)00095-4
Ernst, R., Lautenschläger, T., Branquima, M. F., & Hölting, M. (2020). At the edge of extinction: a first herpetological assessment of the proposed Serra do Pingano Rainforest National Park in Uíge Province, northern Angola. Zoosystematics and Evolution, 96(1), 237-262. https://doi.org/10.3897/zse.96.51997
Evans, B. J., Carter, T. F., Greenbaum, E., Gvoždík, V., Kelley, D. B., McLaughlin, P. J., Pauwels, O. S. G., Portik, D. M., Stanley, E. L., Tinsley, R. C., Tobias, M. L., & Blackburn, D. C. (2015). Genetics, morphology, advertisement calls, and historical records distinguish six new polyploid species of African Clawed Frog (Xenopus, Pipidae) from West and Central Africa. PLoS One, 10(12), e0142823. https://doi.org/10.1371/journal.pone.0142823
Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C., & Foll, M. (2013). Robust demographic inference from genomic and SNP data. PLoS Genetics, 9(10), e1003905. https://doi.org/10.1371/journal.pgen.1003905
Ferrier, S., Manion, G., Elith, J., & Richardson, K. (2007). Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions, 13(3), 252-264. https://doi.org/10.1111/j.1472-4642.2007.00341.x
Fitzpatrick, B. M., Fordyce, J. A., & Gavrilets, S. (2009). Pattern, process, and geographic modes of speciation. Journal of Evolutionary Biology, 22, 2342-2347. https://doi.org/10.1111/j.1420-9101.2009.01833.x
Fox, J. H. (1995). Morphological correlates of auditory sensitivity in anuran amphibians. Brain, Behavior and Evolution, 45(6), 327-338. https://doi.org/10.1159/000113560
Freeman, E. A., & Moisen, G. G. (2008). A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecological Modelling, 217(1-2), 48-58. https://doi.org/10.1016/j.ecolmodel.2008.05.015
Frichot, E., & François, O. (2015). LEA: An R package for landscape and ecological association studies. Methods in Ecology and Evolution, 6(8), 925-929. https://doi.org/10.1111/2041-210X.12382
Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G., & François, O. (2014). Fast and efficient estimation of individual ancestry coefficients. Genetics, 196(4), 973-983. https://doi.org/10.1534/genetics.113.160572
Friis, G., & Milá, B. (2020). Change in sexual signalling traits outruns morphological divergence across an ecological gradient in the post-glacial radiation of the songbird genus Junco. Journal of Evolutionary Biology, 33(9), 1276-1293.
Gaubert, P., Antunes, A., Meng, H., Miao, L., Peigné, S., Justy, F., Njiokou, F., Dufour, S., Danquah, E., Alahakoon, J., Verheyen, E., Stanley, W. T., O’Brien, S. J., Johnson, W. E., & Luo, S.-J. (2018). The complete phylogeny of Pangolins: Scaling up resources for the molecular tracing of the most trafficked mammals on Earth. Journal of Heredity, 109(4), 347-359. https://doi.org/10.1093/jhered/esx097
Gingras, B., Boeckle, M., Herbst, C. T., & Fitch, W. T. (2013). Call acoustics reflect body size across four clades of anurans. Journal of Zoology, 289, 143-150. https://doi.org/10.1111/j.1469-7998.2012.00973.x
Goudie, A. S. (2005). The drainage of Africa since the cretaceous. Geomorphology, 67, 437-456. https://doi.org/10.1016/j.geomorph.2004.11.008
Hardy, O. J., Born, C., Budde, K., Daïnou, K., Dauby, G., Duminil, J., Ewédjé, E.-E., Gomez, C., Heuertz, M., Koffi, G. K., Lowe, A. J., Micheneau, C., Ndiade-Bourobou, D., Piñeiro, R., & Poncet, V. (2013). Comparative phylogeography of African rain forest trees: a review of genetic signatures of vegetation history in the Guineo-Congolian region. Comptes Rendus GeoScience, 345, 284-296. https://doi.org/10.1016/j.crte.2013.05.001
Hassanin, A., Khouider, S., Gembu, G.-C., M. Goodman, S., Kadjo, B., Nesi, N., Pourrut, X., Nakouné, E., & Bonillo, C. (2015). The comparative phylogeography of fruit bats of the tribe Scotonycterini (Chiroptera, Pteropodidae) reveals cryptic species diversity related to African Pleistocene forest refugia. Comptes Rendus Biologies, 338(3), 197-211. https://doi.org/10.1016/j.crvi.2014.12.003
Helmstetter, A. J., Amoussou, B. E. N., Béthune, K., Kamdem, N. G., Glélé Kaki, R., Sonké, B., & Couvreur, T. L. P. (2020). Phylogenomic approaches reveal how climate shapes patterns of genetic diversity in an African rain forest tree species. Molecular Ecology, 29(18), 3560-3573. https://doi.org/10.1111/mec.15572
Helmstetter, A. J., Béthune, K., Kamdem, N. G., Sonké, B., & Couvreur, T. L. P. (2020). Individualistic evolutionary responses of central African rain forest plants to Pleistocene climatic fluctuations. Proceedings of the National Academy of Sciences, USA, 117(5), 32509-32518. https://doi.org/10.1073/pnas.2001018117
Hetherington, T. E. (1994). Sexual differences in the tympanic frequency responses of the American bullfrog (Rana catesbeiana). Journal of the Acoustical Society of America, 96, 1186-1188.
Heuertz, M., Duminil, J., Dauby, G., Savolainen, V., & Hardy, O. J. (2014). Comparative phylogeography in rainforest trees from Lower Guinea. PLoS One, 9, e84307.
Hey, J. (2010). The divergence of chimpanzee species and subspecies as revealed in multipopulation isolation-with-migration analyses. Molecular Biology and Evolution, 27(4), 921-933. https://doi.org/10.1093/molbev/msp298
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965-1978. https://doi.org/10.1002/joc.1276
Hirschfeld, M., Blackburn, D. C., Burger, M., Greenbaum, E., Zassi-Boulou, A.-G., & Rödel, M.-O. (2015). Two new species of long-fingered frogs of the genus Cardioglossa (Anura: Arthroleptidae) from Central African rainforests. African Journal of Herpetology, 64(2), 81-102.
Hoskin, C. J., James, S., & Grigg, G. C. (2009). Ecology and taxonomy-driven deviations in the frog call-body size relationship across the diverse Australian frog fauna. Journal of Zoology, 278, 36-41. https://doi.org/10.1111/j.1469-7998.2009.00550.x
Huntley, J. W., & Voelker, G. (2016). Cryptic diversity in Afro-tropical lowland forests: The systematics and biogeography of the avian genus Bleda. Molecular Phylogenetics and Evolution, 99, 297-308. https://doi.org/10.1016/j.ympev.2016.04.002
Jacquet, F., Denys, C., Verheyen, E., Bryja, J., Hutterer, R., Kerbis Peterhans, J. C., Stanley, W. T., Goodman, S. M., Couloux, A., Colyn, M., & Nicolas, V. (2015). Phylogeography and evolutionary history of the Crocidura olivieri complex (Mammalia, Soricomorpha): from a forest origin to broad ecological expansion across Africa. BMC Evolutionary Biology, 15, 71. https://doi.org/10.1186/s12862-015-0344-y
Jaynes, K. E., Myers, E. A., Drewes, R. C., & Bell, R. C. (2021). New evidence for distinctiveness of the island-endemic Príncipe Giant Tree Frog (Arthroleptidae: Leptopelis palmatus). Herpetological Journal, 31(3), 162-169. https://doi.org/10.33256/31.3.162169
Jombart, T. (2008). Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403-1405. https://doi.org/10.1093/bioinformatics/btn129
Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11, 94. https://doi.org/10.1186/1471-2156-11-94
Jongsma, G. F. M., Barej, M. F., Barratt, C. D., Burger, M., Conradie, W., Ernst, R., Greenbaum, E., Hirschfeld, M., Leaché, A. D., Penner, J., Portik, D. M., Zassi-Boulou, A.-G., Rödel, M.-O., & Blackburn, D. C. (2018). Diversity and biogeography of frogs in the genus Amnirana (Anura: Ranidae) across sub-Saharan Africa. Molecular Phylogenetics and Evolution, 120, 274-285. https://doi.org/10.1016/j.ympev.2017.12.006
Katoh, K., Misawa, K., Kuma, K.-I., & Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059-3066. https://doi.org/10.1093/nar/gkf436
Katoh, K., & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010
Koenen, E. J., Clarkson, J. J., Pennington, T. D., & Chatrou, L. W. (2015). Recently evolved diversity and convergent radiations of rainforest mahoganies (Meliaceae) shed new light on the origins of rainforest hyperdiversity. New Phytologist, 207, 327-339. https://doi.org/10.1111/nph.13490
Krishnan, A., & Tamma, K. (2016). Divergent morphological and acoustic traits in sympatric communities of Asian barbets. Royal Society of Open Science, 3, 160117. https://doi.org/10.1098/rsos.160117
Lattenkamp, E. Z., Nagy, M., Drexl, M., Vernes, S. C., Wiegrebe, L., & Knörnschild, M. (2021). Hearing sensitivity and amplitude coding in bats are differentially shaped by echolocation calls and social calls. Proceedings Royal Society B: Biological Sciences, 288, 20202600.
Leaché, A. D., Portik, D. M., Rivera, D., Rödel, M.-O., Penner, J., Gvoždík, V., Greenbaum, E., Jongsma, G. F. M., Ofori-Boateng, C., Burger, M., Eniang, E. A., Bell, R. C., & Fujita, M. K. (2019). Exploring rain forest diversification using demographic model testing in the African foam-nest treefrog Chiromantis rufescens. Journal of Biogeography, 46(12), 2706-2721. https://doi.org/10.1111/jbi.13716
Linck, E., & Battey, C. J. (2019). Minor allele frequency thresholds strongly affect population structure inference with genomic data sets. Molecular Ecology Resources, 19(3), 639-647. https://doi.org/10.1111/1755-0998.12995
Lynch, M. (2010). Rate, molecular spectrum, and consequences of human mutation. Proceedings of the National Academy of Sciences, USA, 107(3), 961-968. https://doi.org/10.1073/pnas.0912629107
Maley, J. (1996). The African rainforest: main characteristics of changes in vegetation and climate from the Upper- Cretaceous to the Quaternary. Proceedings of the Royal Society of Edinburgh B: Biological Sciences, 104, 31-73.
Manion, G., Lisk, M., Ferrier, S., Nieto-Lugilde, D. & Fitzpatrick, M. C. (2016). gdm: Functions for generalized dissimilarity modeling. R package Version, 1, No. 7.
Marshall, C. A. M., Wieringa, J. J., & Hawthorne, W. D. (2021). An interpolated biogeographical framework for tropical Africa using plant species distributions and the physical environment. Journal of Biogeography, 48, 23-36. https://doi.org/10.1111/jbi.13976
Marzoli, A., Piccirillo, E. M., Renne, P. R., Bellieni, G., Iacumin, M., Nyobe, J. B., & Tongwa, A. T. (2000). The Cameroon volcanic line revisited: Petrogenesis of continental basaltic magmas from lithospheric and Asthenospheric mantle sources. Journal of Petrology, 41, 87-109. https://doi.org/10.1093/petrology/41.1.87
Mayr, E. (1942). Systematics and the Origin of Species. Columbia University Press.
Meyers, J. B., Rosendahl, B. R., Harrison, C. G., & Ding, Z.-D. (1998). Deep-imaging seismic and gravity results from the offshore Cameroon Volcanic Line, and speculation of African hotlines. Tectonophysics, 284, 31-63. https://doi.org/10.1016/S0040-1951(97)00173-X
Morgan, K., Mboumba, J.-F., Ntie, S., Mickala, P., Miller, C. A., Zhen, Y., & Anthony, N. M. (2020). Precipitation and vegetation shape patterns of genomic and craniometric variation in the central African rodent Praomys misonnei. Proceedings of the Royal Society B: Biological Sciences, 287, 20200449.
Morley, R. J. (2000). Origin and evolution of tropical rain forests. John Wiley and Sons.
Muscarella, R., Galante, P. J., Soley-Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M., & Anderson, R. P. (2014). ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution, 5(11), 1198-1205.
Myers, E. A., McKelvy, A. D., & Burbrink, F. T. (2020). Biogeographic barriers, Pleistocene refugia, and climatic gradients in the southeastern Nearctic drive diversification in cornsnakes (Pantherophis guttatus complex). Molecular Ecology, 29(4), 797-811.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858.
Nei, M. (1972). Genetic distance between populations. American Naturalist, 106(949), 283-292. https://doi.org/10.1086/282771
Nicolas, V., Fabre, P.-H., Bryja, J., Denys, C., Verheyen, E., Missoup, A. D., Olayemi, A., Katuala, P., Dudu, A., Colyn, M., Kerbis Peterhans, J., & Demos, T. (2020). The phylogeny of the African wood mice (Muridae, Hylomyscus) based on complete mitochondrial genomes and five nuclear genes reveals their evolutionary history and undescribed diversity. Molecular Phylogenetics and Evolution, 144, 106703. https://doi.org/10.1016/j.ympev.2019.106703
Njabo, K. Y., Bowie, R. C. K., & Sorenson, M. D. (2008). Phylogeny, biogeography and taxonomy of the African wattle-eyes (Aves: Passeriformes: Platysteiridae). Molecular Phylogenetics and Evolution, 48, 136-149. https://doi.org/10.1016/j.ympev.2008.01.013
Noble, G. K. (1924). Contributions of the herpetology of the Belgian Congo based on the collection of the American Museum Congo Expedition, 1909-1915. Part 3, Amphibia. Bulletin of the American Museum of Natural History, 49, 147-347.
Ntie, S., Davis, A. R., Hils, K., Mickala, P., Thomassen, H. A., Morgan, K., Vanthomme, H., Gonder, M. K., & Anthony, N. M. (2017). Evaluating the role of Pleistocene refugia, rivers and environmental variation in the diversification of central African duikers (genera Cephalophus and Philantomba). BMC Evolutionary Biology, 17, 212. https://doi.org/10.1186/s12862-017-1054-4
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & Kassem, K. R. (2001). Terrestrial ecoregions of the world: A new map of life on Earth. BioScience, 51, 933-938.
Ortiz, E. M. (2019). vcf2phylip v2.0: convert a VCF matrix into several matrix formats for phylogenetic analysis. https://doi.org/10.5281/zenodo.2540861
Palumbi, S., Martin, A., Roman, S., McMillan, W. O., Stice, L., & Grabowski, G. (1991). The simple fool’s guide to PCR. Version 2. University of Hawaii, Honoloulu.
Papadopoulou, A., & Knowles, L. L. (2015). Species-specific responses to island connectivity cycles: Refined models for testing phylogeographic concordance across a Mediterranean Pleistocene Aggregate Island Complex. Molecular Ecology, 24(16), 4252-4268.
Penner, J., Wegmann, M., Hillers, A., Schmidt, M., & Rödel, M.-O. (2011). A hotspot revisited - a biogeographical analysis of West African amphibians. Diversity and Distributions, 17, 1077-1088. https://doi.org/10.1111/j.1472-4642.2011.00801.x
Perret, J.-L. (1973). Leptopelis palmatus et Leptopelis rufus, deux espèces distinctes. Annales De La Faculté Des Sciences Du Yaoundé, 15-16, 81-90.
Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. (2012). Double digest RADseq: an inexpensive method for De Novo SNP discovery and genotyping in model and non-model species. PLoS One, 7(5), e37135. https://doi.org/10.1371/journal.pone.0037135
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Pigot, A. L., & Tobias, J. A. (2015). Dispersal and the transition to sympatry in vertebrates. Proceedings of the Royal Society B: Biological Sciences, 282, 20141929.
Portik, D. M., Bell, R. C., Blackburn, D. C., Bauer, A. M., Barratt, C. D., Branch, W. R., Burger, M., Channing, A., Colston, T. J., Conradie, W., Dehling, J. M., Drewes, R. C., Ernst, R., Greenbaum, E., Gvoždík, V., Harvey, J., Hillers, A., Hirschfeld, M., Jongsma, G. F. M., … McGuire, J. A. (2019). Sexual dichromatism drives diversification within a major radiation of African amphibians. Systematic Biology, 68(6), 859-875. https://doi.org/10.1093/sysbio/syz023
Portik, D. M., Leaché, A. D., Rivera, D., Barej, M. F., Burger, M., Hirschfeld, M., Rödel, M.-O., Blackburn, D. C., & Fujita, M. K. (2017). Evaluating mechanisms of diversification in a Guineo-Congolian tropical forest frog using demographic model selection. Molecular Ecology, 26(19), 5245-5263. https://doi.org/10.1111/mec.14266
Portillo, F., & Greenbaum, E. (2014a). A new species of the Leptopelis modestus complex (Anura: Arthroleptidae) from the Albertine Rift of Central Africa. Journal of Herpetology, 48(3), 394-406.
Portillo, F., & Greenbaum, E. (2014b). At the edge of a species boundary: A new and relatively young species of Leptopelis (Anura: Arthroleptidae) from the Itombwe Plateau. Democratic Republic of the Congo. Herpetologica, 70(1), 100-119. https://doi.org/10.1655/HERPETOLOGICA-D-12-00087
Pritchard, J. K., Wen, W., & Falush, D. (2003). Documentation for the structure software, version 2. University of Chicago, Chicago.
Raven Pro. Pro Interactive Sound Analysis Software (Version 1.4) [Computer software]. Ithaca, NY: The Cornell Lab of Ornithology. http://ravensoundsoftware.com/
Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5), 901-904. https://doi.org/10.1093/sysbio/syy032
Rochette, N. C., Rivera-Colón, A. G., & Catchen, J. M. (2019). Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Molecular Ecology, 28(21), 4737-4754. https://doi.org/10.1111/mec.15253
Rödel, M.-O., Emmrich, M., Penner, J., Schmitz, A., & Barej, M. F. (2014). The taxonomic status of two West African Leptopelis species: L. macrotis Schiøtz, 1967 and L. spiritusnoctis Rödel, 2007 (Amphibia: Anura: Arthroleptidae). Zoosystematics and Evolution, 90, 21-31. https://doi.org/10.3897/zse.90.7120
Ryan, P. G., Bloomer, P., Moloney, C. L., Grant, T. J., & Delport, W. (2007). Ecological speciation in south Atlantic island finches. Science, 315, 1420-1423. https://doi.org/10.1126/science.1138829
Salzmann, U., & Hoelzmann, P. (2005). The Dahomey gap: an abrupt climatically induced rain forest fragmentation in West Africa during the late Holocene. The Holocene, 15(2), 190-199. https://doi.org/10.1191/0959683605hl799rp
Sánchez-Vialas, A., Calvo-Revuelta, M., Castroviejo-Fisher, S., & De la Riva, I. (2020). Synopsis of the Amphibians of Equatorial Guinea based upon the authors’ field work and Spanish natural history collections. Proceedings of the California Academy of Sciences, 66(8), 137-230.
Schiøtz, A. (1967). The treefrogs (Rhacophoridae) of West Africa. Spolia Zoological Musei Haunienses, 25, 1-346.
Schiøtz, A. (1999). Treefrogs of Africa. Edition Chimaira.
Schluter, D. (2009). Evidence for ecological speciation and its alternative. Science, 323, 737-741. https://doi.org/10.1126/science.1160006
Springer, M. S., Meredith, R. W., Gatesy, J., Emerling, C. A., Park, J., Rabosky, D. L., Stadler, T., Steiner, C., Ryder, O. A., Janečka, J. E., Fisher, C. A., & Murphy, W. J. (2012). Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species supermatrix. PLoS One, 7, e49521. https://doi.org/10.1371/journal.pone.0049521
Streicher, J. W., Devitt, T. J., Goldberg, C. S., Malone, J. H., Blackmon, H., & Fujita, M. K. (2014). Diversification and asymmetrical gene flow across time and space: lineage sorting and hybridization in polytypic barking frogs. Molecular Ecology, 23(13), 3273-3291. https://doi.org/10.1111/mec.12814
Thuiller, W., Georges, D., Engler, R., & Breiner, F. (2016). Package ‘biomod2’: Species distribution modeling within an ensemble forecasting framework. R package version 3.3-7.
Tolley, K. A., Townsend, T. M., & Vences, M. (2013). Large-scale phylogeny of chameleons suggests African origins and Eocene diversification. Proceedings of the Royal Society B: Biological Sciences, 280, 20130184.
Trauth, M. H., Larrasoaña, J. C., & Mudelsee, M. (2009). Trends, rhythms, and events in Plio-Pleistocene African climate. Quaternary Science Reviews, 28(5-6), 399-411. https://doi.org/10.1016/j.quascirev.2008.11.003
Uy, J. A. C., & Borgia, G. (2000). Sexual selection drives rapid divergence in bowerbird display traits. Evolution, 54(1), 273-278. https://doi.org/10.1111/j.0014-3820.2000.tb00027.x
van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J., & Raes, N. (2016). Minimum required number of specimen records to develop accurate species distribution models. Ecography, 39, 542-552. https://doi.org/10.1111/ecog.01509
Warren, D. L., Matzke, N., Cardillo, M., Baumgartner, J., Beaumont, L., Huron, N. & Dinnage, R. (2019). ENMTools (Software Package). URL: https://github.com/danlwarren/ENMTools. doi:https://doi.org/10.5281/zenodo.3268814
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. https://ggplot2.tidyverse.org
Wiens, J. J. (2004). Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution, 58(1), 193-197. https://doi.org/10.1111/j.0014-3820.2004.tb01586.x
Wilson, A. C., Maxson, L. R., & Sarich, V. M. (1974). Two types of molecular evolution. Evidence from studies of interspecific hybridization. Proceedings of the National Academy of Sciences, 71(7), 2843-2847.
Xu, M., & Shaw, K. L. (2020). Spatial mixing between calling males of two closely related, sympatric crickets suggests beneficial heterospecific interactions in a nonadapative radiation. Journal of Heredity, 111(1), 84-91.
Zhen, Y., Harrigan, R. J., Ruegg, K. C., Anderson, E. C., Ng, T. C., Lao, S., & Smith, T. B. (2017). Genomic divergence across ecological gradients in the Central African rainforest songbird (Andropadus virens). Molecular Ecology, 26(19), 4966-4977.