A novel class of ZNF384 aberrations in acute leukemia
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34529760
PubMed Central
PMC8579251
DOI
10.1182/bloodadvances.2021005318
PII: 476937
Knihovny.cz E-zdroje
- MeSH
- akutní myeloidní leukemie * genetika MeSH
- imunofenotypizace MeSH
- lidé MeSH
- trans-aktivátory * genetika MeSH
- transkripční faktory MeSH
- transkriptom MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- trans-aktivátory * MeSH
- transkripční faktory MeSH
- ZNF384 protein, human MeSH Prohlížeč
Fusion of the ZNF384 gene as the 3' partner to several different 5' partner genes occurs recurrently in B-cell precursor acute lymphoblastic and mixed phenotype B/myeloid leukemia. These canonical fusions (ZNF384r) contain the complete ZNF384 coding sequence and are associated with a specific gene expression signature. Cases with this signature, but without canonical ZNF384 fusions (ZNF384r-like cases), have been described previously. Although some have been shown to harbor ZNF362 fusions, the primary aberrations remain unknown in a major proportion. We studied 3 patients with the ZNF384r signature and unknown primary genetic background and identified a previously unknown class of genetic aberration affecting the last exon of ZNF384 and resulting in disruption of the C-terminal portion of the ZNF384 protein. Importantly, in 2 cases, the ZNF384 aberration, indel, was missed during the bioinformatic analysis but revealed by the manual, targeted reanalysis. Two cases with the novel aberrations had a mixed (B/myeloid) immunophenotype commonly associated with canonical ZNF384 fusions. In conclusion, we present leukemia cases with a novel class of ZNF384 aberrations that phenocopy leukemia with ZNF384r. Therefore, we show that part of the so-called ZNF384r-like cases represent the same genetic subtype as leukemia with canonical ZNF384 fusions.
Zobrazit více v PubMed
Gocho Y, Kiyokawa N, Ichikawa H, et al. ; Tokyo Children’s Cancer Study Group . A novel recurrent EP300-ZNF384 gene fusion in B-cell precursor acute lymphoblastic leukemia. Leukemia. 2015;29(12):2445-2448. PubMed
Qian M, Zhang H, Kham SK, et al. . Whole-transcriptome sequencing identifies a distinct subtype of acute lymphoblastic leukemia with predominant genomic abnormalities of EP300 and CREBBP. Genome Res. 2017;27(2):185-195. PubMed PMC
Gu Z, Churchman M, Roberts K, et al. . Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nat Commun. 2016;7:13331. PubMed PMC
Hirabayashi S, Ohki K, Nakabayashi K, et al. ; Tokyo Children’s Cancer Study Group (TCCSG) . ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype. Haematologica. 2017;102(1):118-129. PubMed PMC
Liu YF, Wang BY, Zhang WN, et al. . Genomic profiling of adult and pediatric B-cell acute lymphoblastic leukemia. EBioMedicine. 2016;8:173-183. PubMed PMC
Zaliova M, Stuchly J, Winkowska L, et al. . Genomic landscape of pediatric B-other acute lymphoblastic leukemia in a consecutive European cohort. Haematologica. 2019;104(7):1396-1406. PubMed PMC
Hirabayashi S, Butler ER, Ohki K, et al. . Clinical characteristics and outcomes of B-ALL with ZNF384 rearrangements: a retrospective analysis by the Ponte di Legno Childhood ALL Working Group [published online ahead of print 10 March 2021]. Leukemia. 2021. PubMed PMC
Novakova M, Zaliova M, Fiser K, et al. . DUX4r, ZNF384r and PAX5-P80R mutated B-cell precursor acute lymphoblastic leukemia frequently undergo monocytic switch. Haematologica. 2021;106(8):2066-2075. haematol.2020.250423. PubMed PMC
Alexander TB, Gu Z, Iacobucci I, et al. . The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature. 2018;562(7727):373-379. PubMed PMC
Li JF, Dai YT, Lilljebjörn H, et al. . Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases. Proc Natl Acad Sci USA. 2018;115(50):E11711-E11720. PubMed PMC
Gu Z, Churchman ML, Roberts KG, et al. . PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat Genet. 2019;51(2):296-307. PubMed PMC
Li H, Durbin R.. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589-595. PubMed PMC
Dobin A, Davis CA, Schlesinger F, et al. . STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21. PubMed PMC
Koboldt DC, Zhang Q, Larson DE, et al. . VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22(3):568-576. PubMed PMC
Kim D, Salzberg SL.. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 2011;12(8):R72. PubMed PMC
McPherson A, Hormozdiari F, Zayed A, et al. . deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLOS Comput Biol. 2011;7(5):e1001138. PubMed PMC
Roberts KG, Li Y, Payne-Turner D, et al. . Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371(11):1005-1015. PubMed PMC