The genetic basis and cell of origin of mixed phenotype acute leukaemia
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R35 CA197695
NCI NIH HHS - United States
P30 CA021765
NCI NIH HHS - United States
R01 CA114563
NCI NIH HHS - United States
U10 CA180899
NCI NIH HHS - United States
U10 CA180886
NCI NIH HHS - United States
P50 GM115279
NIGMS NIH HHS - United States
U10 CA098413
NCI NIH HHS - United States
U24 CA114766
NCI NIH HHS - United States
PubMed
30209392
PubMed Central
PMC6195459
DOI
10.1038/s41586-018-0436-0
PII: 10.1038/s41586-018-0436-0
Knihovny.cz E-zdroje
- MeSH
- akutní bifenotypická leukemie klasifikace genetika patologie MeSH
- buněčný rodokmen genetika MeSH
- fenotyp MeSH
- genetická variace genetika MeSH
- genom lidský genetika MeSH
- genomika MeSH
- imunofenotypizace MeSH
- lidé MeSH
- modely genetické MeSH
- mutace genetika MeSH
- mutační analýza DNA MeSH
- nádorové kmenové buňky imunologie metabolismus patologie MeSH
- trans-aktivátory genetika MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- trans-aktivátory MeSH
- ZNF384 protein, human MeSH Prohlížeč
Mixed phenotype acute leukaemia (MPAL) is a high-risk subtype of leukaemia with myeloid and lymphoid features, limited genetic characterization, and a lack of consensus regarding appropriate therapy. Here we show that the two principal subtypes of MPAL, T/myeloid (T/M) and B/myeloid (B/M), are genetically distinct. Rearrangement of ZNF384 is common in B/M MPAL, and biallelic WT1 alterations are common in T/M MPAL, which shares genomic features with early T-cell precursor acute lymphoblastic leukaemia. We show that the intratumoral immunophenotypic heterogeneity characteristic of MPAL is independent of somatic genetic variation, that founding lesions arise in primitive haematopoietic progenitors, and that individual phenotypic subpopulations can reconstitute the immunophenotypic diversity in vivo. These findings indicate that the cell of origin and founding lesions, rather than an accumulation of distinct genomic alterations, prime tumour cells for lineage promiscuity. Moreover, these findings position MPAL in the spectrum of immature leukaemias and provide a genetically informed framework for future clinical trials of potential treatments for MPAL.
Cancer Therapy Evaluation Program National Cancer Institute Bethesda MD USA
Children's Center for Cancer and Blood Disease Children's Hospital Los Angeles Los Angeles CA USA
Children's Oncology Group Arcadia CA USA
Cytogenetics Shared Resource St Jude Children's Research Hospital Memphis TN USA
Department of Biostatistics St Jude Children's Research Hospital Memphis TN USA
Department of Computational Biology St Jude Children's Research Hospital Memphis TN USA
Department of Oncology St Jude Children's Research Hospital Memphis TN USA
Department of Pathology St Jude Children's Research Hospital Memphis TN USA
Department of Pediatric Oncology Erasmus MC Sophia Rotterdam The Netherlands
Department of Pediatrics Mie University Tsu Japan
Department of Pediatrics University of North Carolina Chapel Hill NC USA
Department of Women and Child Health Hemato Oncology Division University of Padova Padova Italy
Fred Hutchinson Cancer Research Center Clinical Research Division Seattle WA USA
Johns Hopkins Medical Institutions Baltimore MD USA
Michael Smith Genome Sciences Centre BC Cancer Agency Vancouver British Columbia Canada
Office of Cancer Genomics National Cancer Institute Bethesda MD USA
Prinses Maxima Centre Utrecht The Netherlands
The Ohio State University School of Medicine Columbus OH USA
Universitäts Klinikum Essen Germany
University of Alabama at Birmingham Birmingham AL USA
University of Florida Gainesville FL USA
Zobrazit více v PubMed
Gerr H et al. Acute leukaemias of ambiguous lineage in children: characterization, prognosis and therapy recommendations. Br. J. Haematol 149, 84–92 (2010). PubMed
Rubnitz JE et al. Acute mixed lineage leukemia in children: the experience of St Jude Children’s Research Hospital. Blood 113, 5083–5089 (2009). PubMed PMC
Matutes E et al. Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification. Blood 117, 3163–3171 (2011). PubMed
Maude SL et al. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. Blood 125, 1759–1767 (2015). PubMed PMC
Zhang J et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012). PubMed PMC
Swerdlow SH et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (Revised 4th Edition) (IARC, Lyon, 2017).
Richards S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med 17, 405–424 (2015). PubMed PMC
Yasuda T et al. Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults. Nat. Genet 48, 569–574 (2016). PubMed
Williams RT, Roussel MF & Sherr CJ Arf gene loss enhances oncogenicity and limits imatinib response in mouse models of Bcr-Abl-induced acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 103, 6688–6693 (2006). PubMed PMC
Coustan-Smith E et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 10, 147–156 (2009). PubMed PMC
Liu Y et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat. Genet 49, 1211–1218 (2017). PubMed PMC
Bolouri H et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat. Med 24, 103–112 (2018). PubMed PMC
Mansour MR et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 346, 1373–1377 (2014). PubMed PMC
Ma X et al. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nat. Commun 6, 6604 (2015). PubMed PMC
Ping N et al. Establishment and genetic characterization of a novel mixed-phenotype acute leukemia cell line with EP300-ZNF384 fusion. J. Hematol. Oncol 8, 100 (2015). PubMed PMC
Iacobucci I et al. Truncating erythropoietin receptor rearrangements in acute lymphoblastic leukemia. Cancer Cell 29, 186–200 (2016). PubMed PMC
Griffith M et al. Comprehensive genomic analysis reveals FLT3 activation and a therapeutic strategy for a patient with relapsed adult B-lymphoblastic leukemia. Exp. Hematol 44, 603–613 (2016). PubMed PMC
Roberts KG et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N. Engl. J. Med 371, 1005–1015 (2014). PubMed PMC
Conter V et al. Early T-cell precursor acute lymphoblastic leukaemia in children treated in AIEOP centres with AIEOP-BFM protocols: a retrospective analysis. Lancet Haematol 3, e80–e86 (2016). PubMed
Notta F et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 351, aab2116 (2016). PubMed PMC
Lindsley RC et al. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N. Engl. J. Med 376, 536–547 (2017). PubMed PMC
Papaemmanuil E et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med 374, 2209–2221 (2016). PubMed PMC
Li H & Durbin R Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009). PubMed PMC
Li H et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). PubMed PMC
DePristo MA et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet 43, 491–498 (2011). PubMed PMC
Wang J et al. CREST maps somatic structural variation in cancer genomes with base-pair resolution. Nat. Methods 8, 652–654 (2011). PubMed PMC
Kent WJ BLAT—the BLAST-like alignment tool. Genome Res 12, 656–664 (2002). PubMed PMC
Dobin A et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). PubMed PMC
Edgren H et al. Identification of fusion genes in breast cancer by paired-end RNA-sequencing. Genome Biol 12, R6 (2011). PubMed PMC
Anders S, Pyl PT & Huber W HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015). PubMed PMC
Anders S & Huber W Differential expression analysis for sequence count data. Genome Biol 11, R106 (2010). PubMed PMC
Love MI, Huber W & Anders S Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014). PubMed PMC
Subramanian A et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005). PubMed PMC
Harrow J et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 22, 1760–1774 (2012). PubMed PMC
Law CW, Chen Y, Shi W & Smyth GK voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15, R29 (2014). PubMed PMC
Wang K et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 17, 1665–1674 (2007). PubMed PMC
Yau C et al. A statistical approach for detecting genomic aberrations in heterogeneous tumor samples from single nucleotide polymorphism genotyping data. Genome Biol 11, R92 (2010). PubMed PMC
Gu Z & Mullighan CG ShinyCNV: a Shiny/R application to view and annotate DNA copy number variations. Bioinformatics (2018). 10.1093/bioinformatics/bty546 PubMed DOI PMC
Morris TJ et al. ChAMP: 450k chip analysis methylation pipeline. Bioinformatics 30, 428–430 (2014). PubMed PMC
Aryee MJ et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30, 1363–1369 (2014). PubMed PMC
Zhou W, Laird PW & Shen H Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res 45, e22 (2017). PubMed PMC
Nordlund J et al. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol 14, r105 (2013). PubMed PMC
Teschendorff AE et al. An epigenetic signature in peripheral blood predicts active ovarian cancer. PLoS One 4, e8274 (2009). PubMed PMC
Johnson WE, Li C & Rabinovic A Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007). PubMed
van der Maaten L & Hinton G Visualizing data using t-SNE. J. Mach. Learn. Res 9, 2579–2605 (2008).
Mullighan CG et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007). PubMed
Andersson AK et al. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat. Genet 47, 330–337 (2015). PubMed PMC
Gu Z et al. Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nat. Commun 7, 13331 (2016). PubMed PMC
Zhang J et al. Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat. Genet 48, 1481–1489 (2016). PubMed PMC
Den Boer ML et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 10, 125–134 (2009). PubMed PMC
Mullighan CG et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N. Engl. J. Med 360, 470–480 (2009). PubMed PMC
Lilljebjörn H et al. Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia. Nat. Commun 7, 11790 (2016). PubMed PMC
Harvey RC et al. Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood 116, 4874–4884 (2010). PubMed PMC
Yeoh EJ et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1, 133–143 (2002). PubMed
Tibshirani R, Hastie T, Narasimhan B & Chu G Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natl Acad. Sci. USA 99, 6567–6572 (2002). PubMed PMC
McKenna A et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297–1303 (2010). PubMed PMC
Aldiri I et al. The dynamic epigenetic landscape of the retina during development, reprogramming, and tumorigenesis. Neuron 94, 550–568.e10 (2017). PubMed PMC
Kharchenko PV, Tolstorukov MY & Park PJ Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat. Biotechnol 26, 1351–1359 (2008). PubMed PMC
Zhang Y et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137 (2008). PubMed PMC
Quinlan AR & Hall IM BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). PubMed PMC
Shlush LI et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature 547, 104–108 (2017). PubMed
Wunderlich M et al. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia 24, 1785–1788 (2010). PubMed PMC
Roberts KG et al. High frequency and poor outcome of Philadelphia chromosome-like acute lymphoblastic leukemia in adults. J. Clin. Oncol 35, 394–401 (2017). PubMed PMC
Arber DA et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127, 2391–2405 (2016). PubMed
Jaatinen T et al. Global gene expression profile of human cord blood-derived CD133+ cells. Stem Cells 24, 631–641 (2006). PubMed
Novershtern N et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144, 296–309 (2011). PubMed PMC
Flotho C et al. Genes contributing to minimal residual disease in childhood acute lymphoblastic leukemia: prognostic significance of CASP8AP2. Blood 108, 1050–1057 (2006). PubMed PMC
Futreal PA et al. A census of human cancer genes. Nat. Rev. Cancer 4, 177–183 (2004). PubMed PMC
A novel class of ZNF384 aberrations in acute leukemia
Human MLL/KMT2A gene exhibits a second breakpoint cluster region for recurrent MLL-USP2 fusions
Genomic landscape of pediatric B-other acute lymphoblastic leukemia in a consecutive European cohort