Distribution of Soil Extracellular Enzymatic, Microbial, and Biological Functions in the C and N-Cycle Pathways Along a Forest Altitudinal Gradient
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34539590
PubMed Central
PMC8447401
DOI
10.3389/fmicb.2021.660603
Knihovny.cz E-zdroje
- Klíčová slova
- N stock, enzyme activity, forest soils, litter quality, microbial entropy,
- Publikační typ
- časopisecké články MeSH
The diverse chemical, biological, and microbial properties of litter and organic matter (OM) in forest soil along an altitudinal gradient are potentially important for nutrient cycling. In the present study, we sought to evaluate soil chemical, biological, microbial, and enzymatic characteristics at four altitude levels (0, 500, 1,000, and 1,500 m) in northern Iran to characterize nutrient cycling in forest soils. The results showed that carbon (C) and nitrogen (N) turnover changed with altitude along with microbial properties and enzyme activity. At the lowest altitude with mixed forest and no beech trees, the higher content of N in litter and soil, higher pH and microbial biomass nitrogen (MBN), and the greater activities of aminopeptidases affected soil N cycling. At elevations above 1,000 m, where beech is the dominant tree species, the higher activities of cellobiohydrolase, arylsulfatase, β-xylosidase, β-galactosidase, endoglucanase, endoxylanase, and manganese peroxidase (MnP) coincided with higher basal respiration (BR), substrate-induced respiration (SIR), and microbial biomass carbon (MBC) and thus favored conditions for microbial entropy and C turnover. The low N content and high C/N ratio at 500-m altitude were associated with the lowest microbial and enzyme activities. Our results support the view that the plain forest with mixed trees (without beech) had higher litter quality and soil fertility, while forest dominated by beech trees had the potential to store higher C and can potentially better mitigate global warming.
Faculty of Natural Resources and Marine Sciences Tarbiat Modares University Tehran Iran
Human Genetics Research Centre Baqiyatallah University of Medical Sciences Tehran Iran
Zobrazit více v PubMed
Alef K. (1995). “Estimating of soil respiration,” in Methods In Soil Microbiology and Biochemistry, eds Alef K., Nannipieri P. (New York, NY: Academic; ), 464–470.
Allison L. E. (1975). “Organic carbon,” in Part 2: Methods of Soil Analysis, ed. Black C. A. (Madison, WI: American Society of Agronomy; ), 1367–1378.
Anderson T.-H., Domsch K. (1990). Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol. Biochem. 22 251–255. 10.1016/0038-0717(90)90094-g DOI
Baldrian P. (2009). Microbial enzyme-catalyzed processes in soils and their analysis. Plant Soil Environ. 55 370–378. 10.17221/134/2009-pse DOI
Baldrian P., Merhautová V., Petránková M., Cajthaml T., Šnajdr J. (2010). Distribution of microbial biomass and activity of extracellular enzymes in a hardwood forest soil reflect soil moisture content. Appl. Soil Ecol. 46 177–182. 10.1016/j.apsoil.2010.08.013 DOI
Baldrian P., Šnajdr J., Merhautová V., Dobiášová P., Cajthaml T., Valášková V. (2013). Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol. Biochem. 56 60–68. 10.1016/j.soilbio.2012.01.020 DOI
Baldrian P., Štursová M. (2011). “Enzymes in forest soils,” in Soil Enzymology, eds Shukla G., Varma A. (Berlin: Springer-Verlag; ), 61–73. 10.1007/978-3-642-14225-3_4 DOI
Banday M., Bhardwaj D. R., Pala N. A. (2019). Influence of forest type, altitude and NDVI on soil properties in forests of North Western Himalaya, India. Acta Ecol. Sin. 39 50–55. 10.1016/j.chnaes.2018.06.001 DOI
Bayranvand M., Akbarinia M., Salehi Jouzani G., Gharechahi J., Alberti G. (2021a). Dynamics of humus forms and soil characteristics along a forest altitudinal gradient in Hyrcanian forest. iForest-Bioge. Fore 14 26–33. 10.3832/ifor3444-013 PubMed DOI
Bayranvand M., Akbarinia M., Salehi Jouzani G., Gharechahi J., Kooch Y., Baldrian P. (2021b). Composition of soil bacterial and fungal communities in relation to vegetation composition and soil characteristics along an altitudinal gradient. FEMS Microbiol. Ecol. 97:fiaa201. PubMed
Bayranvand M., Kooch Y., Hosseini S. M., Alberti G. (2017a). Humus forms in relation to altitude and forest type in the Northern mountainous regions of Iran. Forest Ecol. Manag. 385 78–86. 10.1016/j.foreco.2016.11.035 DOI
Bayranvand M., Kooch Y., Rey A. (2017b). Earthworm population and microbial activity temporal dynamics in a Caspian Hyrcanian mixed forest. Eur. J. For. Res. 136 447–456. 10.1007/s10342-017-1044-5 DOI
Bello C., Galetti M., Pizo M. A., Magnago L. F. S., Rocha M. F., Lima R. A., et al. (2015). Defaunation affects carbon storage in tropical forests. Sci. Adv. 1:e1501105. 10.1126/sciadv.1501105 PubMed DOI PMC
Bremner J. M., Mulvaney C. S., Madison W. I. (1982). “Nitrogen,” in Methods of Soil Analysis, Second Edn, eds Page A. L., Miller R. H., Keeney R. R. (Madison, WI: American Society of Agronomy; ), 595–624.
Brookes P., Landman A., Pruden G., Jenkinson D. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17 837–842. 10.1016/0038-0717(85)90144-0 DOI
Cardelli V., De Feudis M., Fornasier F., Massaccesi L., Cocco S., Agnelli A., et al. (2019). Changes of topsoil under Fagus sylvatica along a small latitudinal-altitudinal gradient. Geoderma 344 164–178. 10.1016/j.geoderma.2019.01.043 DOI
Cheng W., Zhang Q., Coleman D. C., Carroll C. R., Hoffman C. A. (1996). Is available carbon limiting microbial respiration in the rhizosphere? Soil Biol. Biochem. 28 1283–1288. 10.1016/s0038-0717(96)00138-1 DOI
Cui Y., Bing H., Fang L., Jiang M., Shen G., Yu J., et al. (2019). Extracellular enzyme stoichiometry reveals the carbon and phosphorus limitations of microbial metabolisms in the rhizosphere and bulk soils in alpine ecosystems. Plant Soil 458 7–20. 10.1007/s11104-019-04159-x DOI
D’Alò F., Odriozola I., Baldrian P., Zucconi L., Ripa C., Cannone N., et al. (2021). Microbial activity in alpine soils under climate change. Sci. Total Environ. 783:147012. 10.1016/j.scitotenv.2021.147012 PubMed DOI
Delgado-Baquerizo M., Eldridge D. J., Maestre F. T., Karunaratne S. B., Trivedi P., Reich P. B., et al. (2017). Climate legacies drive global soil carbon stocks in terrestrial ecosystems. Sci. Adv. 3:e1602008. 10.1126/sciadv.1602008 PubMed DOI PMC
Devi S. B., Sherpa S. S. S. S. (2019). Soil carbon and nitrogen stocks along the altitudinal gradient of the Darjeeling Himalayas, India. Environ. Monit. Assess. 191:361. PubMed
Feng C., Ma Y., Jin X., Wang Z., Ma Y., Fu S., et al. (2019). Soil enzyme activities increase following restoration of degraded subtropical forests. Geoderma 351 180–187. 10.1016/j.geoderma.2019.05.006 DOI
Frouz J. (2018). Effects of soil macro-and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332 161–172. 10.1016/j.geoderma.2017.08.039 DOI
García-Palacios P., Maestre F. T., Kattge J., Wall D. H. (2013). Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol. Lett. 16 1045–1053. 10.1111/ele.12137 PubMed DOI PMC
Gebrewahid Y., Gebre-Egziabhier T.-B., Teka K., Birhane E. (2018). Carbon stock potential of scattered trees on farmland along an altitudinal gradient in Tigray, Northern Ethiopia. Environ. Process. 7:40.
Kang H., Kang S., Lee D. (2009). Variations of soil enzyme activities in a temperate forest soil. Ecol. Res. 24 1137–1143. 10.1007/s11284-009-0594-5 DOI
Karger D. N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R. W., et al. (2017). Climatologist at high resolution for the earth’s land surface areas. Sci. Data 4:170122. PubMed PMC
Khaleghi P., Abasi H., Hosani S., Frohar M., Ghelichnian H. (1997). Caspian Forests Profile, Waz Research Forest. Tehran: Research Institute for Forests and Rangelands, Ministry of Jihad-e-Production Department of Education and Research.
Kooch Y., Bayranvand M. (2017). Composition of tree species can mediate spatial variability of C and N cycles in mixed beech forests. Forest Ecol. Manag. 401 55–64. 10.1016/j.foreco.2017.07.001 DOI
Kooch Y., Bayranvand M. (2019). Labile soil organic matter changes related to forest floor quality of tree species mixtures in Oriental beech forests. Ecol. Indic. 107:105598. 10.1016/j.ecolind.2019.105598 DOI
Kotas P., Šantrůčková H., Elster J., Kaštovská E. (2018). Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard). Biogeosciences 15:1879. 10.5194/bg-15-1879-2018 DOI
Krashevska V., Sandmann D., Marian F., Maraun M., Scheu S. (2017). Leaf litter chemistry drives the structure and composition of soil testate amoeba communities in a tropical montane rainforest of the Ecuadorian Andes. Microb. Ecol. 74 681–690. 10.1007/s00248-017-0980-4 PubMed DOI
Liang W. J., Lou Y. L., Li Q., Zhong S., Zhang X. K. (2009). Nematode faunal response to longterm application of nitrogen fertilizer and organic manure in Northeast China. Soil Biol. Biochem. 41 883–890. 10.1016/j.soilbio.2008.06.018 DOI
Lladó S., López-Mondéjar R., Baldrian P. (2017). Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol. Mol. Biol. Rev. 81:e00063-16. PubMed PMC
Marian F., Brown L., Sandmann D., Maraun M., Scheu S. (2019). Roots, mycorrhizal fungi and altitude as determinants of litter decomposition and soil animal communities in tropical montane rainforests. Plant Soil 438 1–18. 10.1007/s11104-019-03999-x DOI
Massaccesi L., Feudis M. D., Leccese A., Agnelli A. (2020). Altitude and vegetation affect soil organic carbon, basal respiration and microbial biomass in apennine forest soils. Forests 11:710. 10.3390/f11060710 DOI
Mayzlish E., Steinberger Y. (2004). Effects of chemical inhibitors on soil protozoan dynamics in a desert ecosystem. Biol. Fert. Soils 39 415–421. 10.1007/s00374-004-0723-9 DOI
Meng C., Tian D., Zeng H., Li Z., Chen H. Y., Niu S. (2020). Global meta-analysis on the responses of soil extracellular enzyme activities to warming. Sci. Total Environ. 705:135992. 10.1016/j.scitotenv.2019.135992 PubMed DOI
Ndossi E. M., Becker J. N., Hemp A., Dippold M. A., Kuzyakov Y., Razavi B. S. (2020). Effects of land use and elevation on the functional characteristics of soil enzymes at Mt. Kilimanjaro. Eur. J. Soil Biol. 97:103167. 10.1016/j.ejsobi.2020.103167 DOI
Neatrour M. A., Jones R. H., Golladay S. W. (2005). Correlations between soil nutrient availability and fine-root biomass at two spatial scales in forested wetlands with contrasting hydrological regimes. Can. J. For. Res. 35 2934–2941. 10.1139/x05-217 PubMed DOI
Nottingham A. T., Meir P., Velasquez E., Turner B. L. (2020). Soil carbon loss by experimental warming in a tropical forest. Nature 584 234–237. 10.1038/s41586-020-2566-4 PubMed DOI
Nottingham A. T., Whitaker J., Ostle N. J., Bardgett R. D., McNamara N. P., Fierer N., et al. (2019). Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecol. Lett. 22 1889–1899. 10.1111/ele.13379 PubMed DOI
Plaster E. J. (1985). Soil Science and Management. Albany, NY: Delmar Publishers Inc, 124.
Quan Q., Tian D., Luo Y., Zhang F., Crowther T. W., Zhu K., et al. (2019). Water scaling of ecosystem carbon cycle feedback to climate warming. Sci. Adv. 5:eaav1131. 10.1126/sciadv.aav1131 PubMed DOI PMC
R Core Team (2016). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Razanamalala K., Razafimbelo T., Maron P.-A., Ranjard L., Chemidlin N., Lelièvre M., et al. (2018). Soil microbial diversity drives the priming effect along climate gradients: a case study in Madagascar. ISME J. 12 451–462. 10.1038/ismej.2017.178 PubMed DOI PMC
Sierra J., Causeret F. (2018). Changes in soil carbon inputs and outputs along a tropical altitudinal gradient of volcanic soils under intensive agriculture. Geoderma 320 95–104. 10.1016/j.geoderma.2018.01.025 DOI
Šnajdr J., Dobiášová P., Urbanová M., Petránková M., Cajthaml T., Frouz J., et al. (2013). Dominant trees affect microbial community composition and activity in post-mining afforested soils. Soil Biol. Biochem. 56 105–115. 10.1016/j.soilbio.2012.05.004 DOI
Šnajdr J., Valášková V., Merhautová V., Cajthaml T., Baldrian P. (2008). Activity and spatial distribution of lignocellulose-degrading enzymes during forest soil colonization by saprotrophic basidiomycetes. Enzyme Microb. Technol. 43 186–192. 10.1016/j.enzmictec.2007.11.008 DOI
Štursová M., Baldrian P. (2011). Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity. Plant Soil 338 99–110. 10.1007/s11104-010-0296-3 DOI
Talebi K. S., Sajedi T., Pourhashemi M. (2013). Forests of Iran: A Treasure From the Past, a Hope for the Future. Berlin: Springer Science & Business Media.
Urbanová M., Šnajdr J., Baldrian P. (2015). Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol. Biochem. 84 53–64. 10.1016/j.soilbio.2015.02.011 DOI
Valášková V., Šnajdr J., Bittner B., Cajthaml T., Merhautová V., Hofrichter M., et al. (2007). Production of lignocellulose-degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest. Soil Biol. Biochem. 39 2651–2660. 10.1016/j.soilbio.2007.05.023 DOI
Walker T. W., Kaiser C., Strasser F., Herbold C. W., Leblans N. I., Woebken D., et al. (2018). Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Change 8 885–889. 10.1038/s41558-018-0259-x PubMed DOI PMC
Xiao L., Li P., Shi P., Liu Y. (2019). Soil nutrient stoichiometries and enzymatic activities along an elevational gradient in the dry-hot valley region of southwestern China. Arch. Agron. Soil Sci. 65 322–333. 10.1080/03650340.2018.1502882 DOI
Xu G., Long Z., Ren P., Ren C., Cao Y., Huang Y., et al. (2020). Differential responses of soil hydrolytic and oxidative enzyme activities to the natural forest conversion. Sci. Total Environ. 716:136414. 10.1016/j.scitotenv.2019.136414 PubMed DOI