Valorisation of agricultural waste derived biochars in aquaculture to remove organic micropollutants from water - experimental study and molecular dynamics simulations

. 2021 Dec 15 ; 300 () : 113717. [epub] 20210920

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34547568
Odkazy

PubMed 34547568
PubMed Central PMC8542888
DOI 10.1016/j.jenvman.2021.113717
PII: S0301-4797(21)01779-5
Knihovny.cz E-zdroje

In this work, we evaluated the valorisation of agricultural waste materials by transforming coconut husks and shells, corncobs and rice straw into biochar for water treatment in aquaculture. We compared the biochars' suitability for removal of organic micropollutants (acetaminophen, oxytetracycline, tetracycline, enrofloxacin, atrazine, diuron and diclofenac) from surface water needed for aquaculture. The biochars were prepared by three methods ranging from inexpensive drum kilns (200 °C) to pyrolysis with biogasfication (350-750 °C). Overall, antibiotics tetracycline and enrofloxacin were the most strongly sorbed micropollutants, and coconut husk biochar prepared at 750 °C was the best sorbent material. Molecular Dynamics simulations indicated that the major sorption mechanism is via π-π stacking interactions and there is a possibility of multilayer sorption for some of the micropollutants. We observed, a strong impact of ionic strength (salinity), which is an important consideration in coastal aquaculture applications. High salinity decreased the sorption for antibiotics oxytetracycline, tetracycline and enrofloxacin but increased diclofenac, atrazine and diuron sorption. We considered coconut husk biochar produced in drum kilns the most practical option for biochar applications in small-scale coastal aquacultures in South Asia. Pilot trials of canal water filtration at an aquaculture farm revealed that micropollutant sorption by coconut husk biochar under real-world conditions might be 10-500 times less than observed in the laboratory studies. Even so, biochar amendment of sand enhanced the micropollutant retention, which may facilitate subsequent biodegradation and improve the quality of brackish surface water used for food production in coastal aquaculture.

Zobrazit více v PubMed

Afzal M.Z., Sun X.-F., Liu J., Song C., Wang S.-G., Javed A. Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads. Sci. Total Environ. 2018;639:560–569. PubMed

Ahmad M., Rajapaksha A.U., Lim J.E., Zhang M., Bolan N., Mohan D., Vithanage M., Lee S.S., Ok Y.S. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere. 2014;99:19–33. PubMed

Álvarez-Esmorís C., Conde-Cid M., Ferreira-Coelho G., Fernández-Sanjurjo M.J., Núñez-Delgado A., Álvarez-Rodríguez E., Arias-Estévez M. Adsorption/desorption of sulfamethoxypyridazine and enrofloxacin in agricultural soils. Sci. Total Environ. 2020;706:136015. PubMed

Amde M., Liu J.-F., Pang L. Environmental application, fate, effects, and concerns of ionic liquids: a review. Environ. Sci. Technol. 2015;49:12611–12627. PubMed

Borthakur P., Aryafard M., Zara Z., David Ř., Minofar B., Das M.R., Vithanage M. Computational and experimental assessment of pH and specific ions on the solute solvent interactions of clay-biochar composites towards tetracycline adsorption: implications on wastewater treatment. J. Environ. Manag. 2021;283:111989. PubMed

Caban M., Folentarska A., Lis H., Kobylis P., Bielicka-Giełdoń A., Kumirska J., Ciesielski W., Stepnowski P. Critical study of crop-derived biochars for soil amendment and pharmaceutical ecotoxicity reduction. Chemosphere. 2020;248:125976. PubMed

Cheewaphongphan P., Garivait S. Bottom up approach to estimate air pollution of rice residue open burning in Thailand. Asia-Pacific Journal of Atmospheric Sciences. 2013;49:139–149.

Chen C., Zhou W., Lin D. Sorption characteristics of N-nitrosodimethylamine onto biochar from aqueous solution. Bioresour. Technol. 2015;179:359–366. PubMed

COUNCIL . COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT; Strasburg: 2018. The European Economic and Social Committee and the Committee of the Regions on a Monitoring Framework for the Circular Economy.

de Castro L.V., Brandt E.M.F., Campos A.C.V., de Aquino S.F., Werner D., Afonso R.J.d.C.F., Mota Filho C.R. Behavior of micropollutants in polishing units that combine sorption and biodegradation mechanisms to improve the quality of activated sludge effluent. Water, Air, Soil Pollut. 2018;229:189.

Filipinas J.Q., Rivera K.K.P., Ong D.C., Pingul-Ong S.M.B., Abarca R.R.M., de Luna M.D.G. Biochar; 2021. Removal of Sodium Diclofenac from Aqueous Solutions by Rice Hull Biochar.

Han L., Qian L., Yan J., Chen M. Effects of the biochar aromaticity and molecular structures of the chlorinated organic compounds on the adsorption characteristics. Environ. Sci. Pollut. Control Ser. 2017;24:5554–5565. PubMed

Holmström K., Gräslund S., Wahlström A., Poungshompoo S., Bengtsson B.-E., Kautsky N. Antibiotic use in shrimp farming and implications for environmental impacts and human health. Int. J. Food Sci. Technol. 2003;38:255–266.

Hu Y., Zhu Y., Zhang Y., Lin T., Zeng G., Zhang S., Wang Y., He W., Zhang M., Long H. An efficient adsorbent: simultaneous activated and magnetic ZnO doped biochar derived from camphor leaves for ciprofloxacin adsorption. Bioresour. Technol. 2019;288:121511. PubMed

Huang H., Tang J., Gao K., He R., Zhao H., Werner D. Characterization of KOH modified biochars from different pyrolysis temperatures and enhanced adsorption of antibiotics. RSC Adv. 2017;7:14640–14648.

Inyang M., Gao B., Zimmerman A., Zhou Y., Cao X. Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars. Environ. Sci. Pollut. Control Ser. 2015;22:1868–1876. PubMed

Jang H.M., Kan E. Engineered biochar from agricultural waste for removal of tetracycline in water. Bioresour. Technol. 2019;284:437–447. PubMed

Ji L., Liu F., Xu Z., Zheng S., Zhu D. Adsorption of pharmaceutical antibiotics on template-synthesized ordered micro- and mesoporous carbons. Environ. Sci. Technol. 2010;44:3116–3122. PubMed

Jia M., Wang F., Bian Y., Jin X., Song Y., Kengara F.O., Xu R., Jiang X. Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar. Bioresour. Technol. 2013;136:87–93. PubMed

Jung C., Boateng L.K., Flora J.R.V., Oh J., Braswell M.C., Son A., Yoon Y. Competitive adsorption of selected non-steroidal anti-inflammatory drugs on activated biochars: experimental and molecular modeling study. Chem. Eng. J. 2015;264:1–9.

Kim D.G., Choi D., Cheon S., Ko S.-O., Kang S., Oh S. Addition of biochar into activated sludge improves removal of antibiotic ciprofloxacin. Journal of Water Process Engineering. 2020;33:101019.

Lehmann J., Joseph S. Routledge; London: 2015. Biochar for Environmental Management.

Liu P., Liu W.-J., Jiang H., Chen J.-J., Li W.-W., Yu H.-Q. Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresour. Technol. 2012;121:235–240. PubMed

Ma Y., Wu L., Li P., Yang L., He L., Chen S., Yang Y., Gao F., Qi X., Zhang Z. A novel, efficient and sustainable magnetic sludge biochar modified by graphene oxide for environmental concentration imidacloprid removal. J. Hazard Mater. 2021;407:124777. PubMed

Mandal A., Singh N., Purakayastha T.J. Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Sci. Total Environ. 2017;577:376–385. PubMed

Menon N.G., Mohapatra S., Padhye L.P., Tatiparti S.S.V., Mukherji S. In: Emerging Issues in the Water Environment during Anthropocene: A South East Asian Perspective. Kumar M., Snow D.D., Honda R., editors. Springer Singapore; Singapore: 2020. Review on occurrence and toxicity of pharmaceutical contamination in southeast Asia; pp. 63–91.

Mohan D., Sarswat A., Ok Y.S., Pittman C.U. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review. Bioresour. Technol. 2014;160:191–202. PubMed

Mrozik W., Vinitnantharat S., Thongsamer T., Pansuk N., Pattanachan P., Thayanukul P., Acharya K., Baluja M.Q., Hazlerigg C., Robson A.F., Davenport R.J., Werner D. The food-water quality nexus in periurban aquacultures downstream of Bangkok, Thailand. Sci. Total Environ. 2019;695:133923. PubMed PMC

OECD . In: OECD Guideline for Testing of Chemicals. OECD, editor. 2000. p. 106.

Peng P., Lang Y.-H., Wang X.-M. Adsorption behavior and mechanism of pentachlorophenol on reed biochars: pH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms. Ecol. Eng. 2016;90:225–233.

Penn C.J., Gonzalez J.M., Chagas I. Investigation of atrazine sorption to biochar with titration calorimetry and flow-through analysis: implications for design of pollution-control structures. Frontiers in Chemistry. 2018;6 PubMed PMC

Rosales E., Meijide J., Pazos M., Sanromán M.A. Challenges and recent advances in biochar as low-cost biosorbent: from batch assays to continuous-flow systems. Bioresour. Technol. 2017;246:176–192. PubMed

Sajjakulnukit B., Yingyuad R., Maneekhao V., Pongnarintasut V., Bhattacharya S.C., Abdul Salam P. Assessment of sustainable energy potential of non-plantation biomass resources in Thailand. Biomass Bioenergy. 2005;29:214–224.

Schwarzenbach R.P., Gschwend P.M., Imboden D.M. second ed. John Wiley & Sons, Inc; Hoboken, New Jersey: 2003. Environmental Organic Chemistry.

Shan D., Deng S., Zhao T., Wang B., Wang Y., Huang J., Yu G., Winglee J., Wiesner M.R. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. J. Hazard Mater. 2016;305:156–163. PubMed PMC

Sugiyama S., Staples D., Funge-Smith S. FAO; 2004. Status and Potential of Fisheries and Aquaculture in Asia and the Pacific.

Tan G., Sun W., Xu Y., Wang H., Xu N. Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution. Bioresour. Technol. 2016;211:727–735. PubMed

Trinh B.-S., Werner D., Reid B.J. Application of a full-scale wood gasification biochar as a soil improver to reduce organic pollutant leaching risks. J. Chem. Technol. Biotechnol. 2017;92:1928–1937.

Tůma L., Jeníček D., Jungwirth P. Propensity of heavier halides for the water/vapor interface revisited using the Amoeba force field. Chem. Phys. Lett. 2005;411:70–74.

Ulrich B.A., Im E.A., Werner D., Higgins C.P. Biochar and activated carbon for enhanced trace organic contaminant retention in stormwater infiltration systems. Environ. Sci. Technol. 2015;49:6222–6230. PubMed

Ureña-Amate M.D., Socías-Viciana M., González-Pradas E., Saifi M. Effects of ionic strength and temperature on adsorption of atrazine by a heat treated kerolite. Chemosphere. 2005;59:69–74. PubMed

Vrbka L., Mucha M., Minofar B., Jungwirth P., Brown E.C., Tobias D.J. Propensity of soft ions for the air/water interface. Curr. Opin. Colloid Interface Sci. 2004;9:67–73.

Werner D., Karapanagioti H.K., Sabatini D.A. Assessing the effect of grain-scale sorption rate limitations on the fate of hydrophobic organic groundwater pollutants. J. Contam. Hydrol. 2012;129–130:70–79. PubMed

Xie M., Chen W., Xu Z., Zheng S., Zhu D. Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions. Environ. Pollut. 2014;186:187–194. PubMed

Xu D., Gao Y., Lin Z., Gao W., Zhang H., Karnowo K., Hu X., Sun H., Syed-Hassan S.S.A., Zhang S. Application of biochar derived from pyrolysis of waste fiberboard on tetracycline adsorption in aqueous solution. Frontiers in Chemistry. 2020;7 PubMed PMC

Yao H., Lu J., Wu J., Lu Z., Wilson P.C., Shen Y. Adsorption of fluoroquinolone antibiotics by wastewater sludge biochar: role of the sludge source. Water, Air, Soil Pollut. 2012;224:1370.

Yerizam M., Faizal M.F.M., Marsi M., Novia N. Characteristics of composite rice straw and coconut shell as biomass energy resources (Briquette)(Case study: muara telang village, banyuasin of South sumatra) Int. J. Adv. Sci. Eng. Inf. Technol. 2013;3(3):232.

Yue L., Ge C., Feng D., Yu H., Deng H., Fu B. Adsorption–desorption behavior of atrazine on agricultural soils in China. J. Environ. Sci. 2017;57:180–189. PubMed

Zhang C., Lai C., Zeng G., Huang D., Yang C., Wang Y., Zhou Y., Cheng M. Efficacy of carbonaceous nanocomposites for sorbing ionizable antibiotic sulfamethazine from aqueous solution. Water Res. 2016;95:103–112. PubMed

Zhang W., Zheng J., Zheng P., Qiu R. Atrazine immobilization on sludge derived biochar and the interactive influence of coexisting Pb(II) or Cr(VI) ions. Chemosphere. 2015;134:438–445. PubMed

Zhao J., Liang G., Zhang X., Cai X., Li R., Xie X., Wang Z. Coating magnetic biochar with humic acid for high efficient removal of fluoroquinolone antibiotics in water. Sci. Total Environ. 2019;688:1205–1215. PubMed

Zhou Z., Shi D., Qiu Y., Sheng G.D. Sorptive domains of pine chars as probed by benzene and nitrobenzene. Environ. Pollut. 2010;158:201–206. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...