When fossil clades 'compete': local dominance, global diversification dynamics and causation
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34547910
PubMed Central
PMC8456135
DOI
10.1098/rspb.2021.1632
Knihovny.cz E-zdroje
- Klíčová slova
- Granger causality, biotic interactions, bryozoa, competition, fossil biodiversity, macroevolution,
- MeSH
- biodiverzita MeSH
- biologická evoluce MeSH
- Bryozoa * MeSH
- fylogeneze MeSH
- zkameněliny * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Examining the supposition that local-scale competition drives macroevolutionary patterns has become a familiar goal in fossil biodiversity studies. However, it is an elusive goal, hampered by inadequate confirmation of ecological equivalence and interactive processes between clades, patchy sampling, few comparative analyses of local species assemblages over long geological intervals, and a dearth of appropriate statistical tools. We address these concerns by reevaluating one of the classic examples of clade displacement in the fossil record, in which cheilostome bryozoans surpass the once dominant cyclostomes. Here, we analyse a newly expanded and vetted compilation of 40 190 fossil species occurrences to estimate cheilostome and cyclostome patterns of species proportions within assemblages, global genus richness and genus origination and extinction rates while accounting for sampling. Comparison of time-series models using linear stochastic differential equations suggests that inter-clade genus origination and extinction rates are causally linked to each other in a complex feedback relationship rather than by simple correlations or unidirectional relationships, and that these rates are not causally linked to changing within-assemblage proportions of cheilostome versus cyclostome species.
Department of Geography Technical University of Liberec Studentská 2 CZ 461 Liberec Czech Republic
Natural History Museum University of Oslo Oslo Norway
Negaunee Integrative Research Center Field Museum 1400 S Lake Shore Drive Chicago IL 60605 USA
Zobrazit více v PubMed
Benton MJ. 1991Extinction, biotic replacements, and clade interactions. In The unity of evolutionary biology (ed. Dudley EC), pp. 89-102. Portland, OR: Dioscorides Press.
Gould SJ. 2000Beyond competition. Paleobiology 26, 1-6. (10.1666/0094-8373(2000)026<0001:BC>2.0.CO;2) DOI
Liow LH, Reitan T, Harnik PG. 2015Ecological interactions on macroevolutionary time scales: clams and brachiopods are more than ships that pass in the night. Ecol. Lett. 18, 1030-1039. (10.1111/ele.12485) PubMed DOI
Silvestro D, Antonelli A, Salamin N, Quental TB. 2015The role of clade competition in the diversification of North American canids. Proc. Natl Acad. Sci. USA 112, 8684-8689. (10.1073/pnas.1502803112) PubMed DOI PMC
Silvestro D, Pires MM, Quental TB, Salamin N. 2017Bayesian estimation of multiple clade competition from fossil data. Evol. Ecol. Res. 18, 41-59.
Pires MM, Silvestro D, Quental TB. 2017Interactions within and between clades shaped the diversification of terrestrial carnivores. Evolution 71, 1855-1864. (10.1111/evo.13269) PubMed DOI
Condamine FL, Silvestro D, Koppelhus EB, Antonelli A. 2020The rise of angiosperms pushed conifers to decline during global cooling. Proc. Natl Acad. Sci. USA 117, 28 867-28 875. (10.1073/pnas.2005571117) PubMed DOI PMC
Foote M. 2000Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26, 74-102. (10.1666/0094-8373(2000)26[74:OAECOT]2.0.CO;2) DOI
Bromham L. 2016Testing hypotheses in macroevolution. Stud. Hist. Philos. Sci. A 55, 47-59. (10.1016/j.shpsa.2015.08.013) PubMed DOI
Hannisdal B, Liow LH. 2018Causality from palaeontological time series. Palaeontology 61, 495-509. (10.1111/pala.12370) DOI
Harmon LJ, et al. 2019Detecting the macroevolutionary signal of species interactions. J. Evol. Biol. 32, 769-782. (10.1111/jeb.13477) PubMed DOI
Fraser D, et al. 2021Investigating biotic interactions in deep time. Trends Ecol. Evol. 36, 61-75. (10.1016/j.tree.2020.09.001) PubMed DOI
Grantham T. 2007Is macroevolution more than successive rounds of microevolution? Palaeontology 50, 75-85. (10.1111/j.1475-4983.2006.00603.x) DOI
Brigandt I, Love A.. 2017Reductionism in biology. In The Stanford encyclopedia of philosophy (ed. Zalta EN). Stanford, CA: Metaphysics Research Laboratory, Stanford University. See https://plato.stanford.edu/archives/spr2017/entries/reduction-biology/.
Hembry DH, Weber MJ. 2020Ecological interactions and macroevolution: a new field with old roots. Annu. Rev. Ecol. Evol. Syst. 51, 215-243. (10.1146/annurev-ecolsys-011720-121505) DOI
Jablonski D. 2008Biotic interactions and macroevolution: extensions and mismatches across scales and levels. Evolution 62, 715-739. (10.1111/j.1558-5646.2008.00317.x) PubMed DOI
Klompmaker AA, Finnegan S. 2018Extreme rarity of competitive exclusion in modern and fossil marine benthic ecosystems. Geology 46, 723-726. (10.1130/G45032.1) DOI
Taylor PD, Waeschenbach A. 2015Phylogeny and diversification of bryozoans. Palaeontology 58, 585-599. (10.1111/pala.12170) DOI
Schwaha T (ed.). 2021. Phylum bryozoa. Boston, MA: De Gruyter.
Lidgard S, McKinney FK, Taylor PD. 1993Competition, clade replacement, and a history of cyclostome and cheilostome bryozoan diversity. Paleobiology 19, 352-371. (10.1017/S0094837300000324) DOI
Taylor PD. 2020Bryozoan paleobiology. Hoboken, NJ: Wiley-Blackwell.
McKinney FK. 1992Competitive interactions between related clades: evolutionary implications of overgrowth interactions between encrusting cyclostome and cheilostome bryozoans. Mar. Biol. 114, 645-652. (10.1007/BF00357261) DOI
McKinney FK. 1995One hundred million years of competitive interactions between bryozoan clades: asymmetrical but not escalating. Biol. J. Linnean Soc. 56, 465-481. (10.1111/j.1095-8312.1995.tb01105.x) DOI
Barnes DKA, Dick MH. 2000Overgrowth competition between clades: implications for interpretation of the fossil record and overgrowth indices. Biol. Bull. 199, 85-94. (10.2307/1542710) PubMed DOI
Sepkoski J Jr, McKinney FK, Lidgard S. 2000Competitive displacement among post-Paleozoic cyclostome and cheilostome bryozoans. Paleobiology 26, 7-18. (10.1666/0094-8373(2000)026<0007:CDAPPC>2.0.CO;2) PubMed DOI
Barnes DKA. 2002Clade perseverance from Mesozoic to present: a multidisciplinary approach to interpretation of pattern and process. Biol. Bull. 203, 161-172. (10.2307/1543385) PubMed DOI
Taylor PD. 2016Competition between encrusters on marine hard substrates and its fossil record. Palaeontology 59, 481-497. (10.1111/pala.12239) DOI
Lupia R, Lidgard S, Crane PR. 1999Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology 25, 305-340. (10.1017/S009483730002131X) DOI
Nagalingum NS, Drinnan AN, Lupia R, McLoughlin S. 2002Fern spore diversity and abundance in Australia during the Cretaceous. Rev. Palaeobot. Palynol. 119, 69-92. (10.1016/S0034-6667(01)00130-0) DOI
McKinney FK, Taylor PD. 2001Bryozoan generic extinctions and originations during the last one hundred million years. Palaeontol. Electron. 4, 1-26.
McKinney FK, Lidgard S, Sepkoski JJ Jr, Taylor PD. 1998Decoupled temporal patterns of evolution and ecology in two post-Paleozoic clades. Science 281, 807-809. (10.1126/science.281.5378.807) PubMed DOI
Briggs JC. 1998Biotic replacements: extinction or clade interaction? BioScience 48, 389-395. (10.2307/1313378) DOI
Granger CWJ. 1969Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424-438. (10.2307/1912791) DOI
Wiedermann W, Eye Av. 2016Statistics and causality: methods for applied empirical research. Hoboken, NY: John Wiley & Sons.
Barraquand F, Picoche C, Detto M, Hartig F. 2020Inferring species interactions using Granger causality and convergent cross mapping. Theor. Ecol. 14, 87-105. (10.1007/s12080-020-00482-7) DOI
Reitan T, Liow LH. 2019Layeranalyzer: inferring correlative and causal connections from time series data in R. Methods Ecol. Evol. 10, 2183-2188. (10.1111/2041-210X.13299) DOI
R Core Team. 2021R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. See https://www.R-project.org/.
Jolly GM. 1965Explicit estimates from capture-recapture data with both death and immigration-stochastic model. Biometrika 52, 225-247. (10.2307/2333826) PubMed DOI
Seber GAF. 1965A note on the multiple-recapture census. Biometrika 52, 249-259. (10.2307/2333827) PubMed DOI
Pollock KH, Nichols JD, Brownie C, Hines JE. 1990Statistical inference for capture-recapture experiments. Wildl. Monogr. 107, 3-97.
King R. 2014Statistical ecology. Annu. Rev. Stat. Appl. 1, 401-426. (10.1146/annurev-statistics-022513-115633) DOI
Williams BK, Nichols JD, Conroy MJ. 2002Analysis and management of animal populations. San Diego, CA: Academic Press.
Liow LH, Nichols JD. 2010Estimating rates and probabilities of origination and extinction using taxonomic occurrence data: capture-mark-recapture (CMR) approaches. Paleontol. Soc. Pap. 16, 81-94. (10.1017/S1089332600001820) DOI
Efford ER. 2019Open population capture-recapture models. R package version 1.4.1. See https://CRAN.R-project.org/package=openCR.
Silvestro D, Salamin N, Schnitzler J. 2014PyRate: a new program to estimate speciation and extinction rates from incomplete fossil data. Methods Ecol. Evol. 5, 1126-1131. (10.1111/2041-210X.12263) DOI
Pradel R. 1996Utilization of capture-mark-recapture for the study of recruitment and population growth rate. Biometrics 52, 703-709. (10.2307/2532908) DOI
Connolly SR, Miller AI. 2001Joint estimation of sampling and turnover rates from fossil databases: capture-mark-recapture methods revisited. Paleobiology 27, 751-767. (10.1666/0094-8373(2001)027<0751:JEOSAT>2.0.CO;2) DOI
Liow LH, Fortelius M, Bingham E, Lintulaakso K, Mannila H, Flynn L, Stenseth NC. 2008Higher origination and extinction rates in larger mammals. Proc. Natl Acad. Sci. USA 105, 6097-6102. (10.1073/pnas.0709763105) PubMed DOI PMC
Martins MJF, Puckett TM, Lockwood R, Swaddle JP, Hunt G. 2018High male sexual investment as a driver of extinction in fossil ostracods. Nature 556, 366-369. (10.1038/s41586-018-0020-7) PubMed DOI
Sibert E, Friedman M, Hull P, Hunt G, Norris R. 2018Two pulses of morphological diversification in Pacific pelagic fishes following the Cretaceous–Palaeogene mass extinction. Proc. R. Soc. B 285, 20181194. (10.1098/rspb.2018.1194) PubMed DOI PMC
Kopperud BT, Lidgard S, Liow LH. 2019Text-mined fossil biodiversity dynamics using machine learning. Proc. R. Soc. B 286, 20190022. (10.1098/rspb.2019.0022) PubMed DOI PMC
Øksendal B. 2010Stochastic differential equations: an introduction with applications. Berlin, Germany: Springer Science & Business Media.
Schweder T. 1970Composable Markov processes. J. Appl. Probab. 7, 400-410. (10.2307/3211973) DOI
Reitan T, Schweder T, Henderiks J. 2012Phenotypic evolution studied by layered stochastic differential equations. Ann. Appl. Stat. 6, 1531-1551. (10.1214/12-AOAS559) DOI
Reitan T, Liow LH. 2017An unknown Phanerozoic driver of brachiopod extinction rates unveiled by multivariate linear stochastic differential equations. Paleobiology 43, 537-549. (10.1017/pab.2017.11) DOI
Jeffreys H. 1998Theory of probability, 3rd edn. Oxford, UK: Oxford University Press.
Mondal S, Harries PJ. 2016The effect of taxonomic corrections on Phanerozoic generic richness trends in marine bivalves with a discussion on the clade's overall history. Paleobiology 42, 157-171. (10.1017/pab.2015.35) DOI
Hendricks JR, Saupe EE, Myers CE, Hermsen EJ, Allmon WD. 2014The generification of the fossil record. Paleobiology 40, 511-528. (10.1666/13076) DOI
Renaudie J, Lazarus DB. 2013On the accuracy of paleodiversity reconstructions: a case study in Antarctic Neogene radiolarians. Paleobiology 39, 491-509. (10.1666/12016) DOI
Prebble JG, Kennedy EM, Reichgelt T, Clowes C, Womack T, Mildenhall DC, Raine JI, Crouch EM. 2021A 100 million year composite pollen record from New Zealand shows maximum angiosperm abundance delayed until Eocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 566, 110207. (10.1016/j.palaeo.2020.110207) DOI
Sogot CE, Harper EM, Taylor PD. 2013Biogeographical and ecological patterns in bryozoans across the Cretaceous-Paleogene boundary: implications for the phytoplankton collapse hypothesis. Geology 41, 631-634. (10.1130/G34020.1) DOI
Clapham ME, Bottjer DJ, Powers CM, Bonuso N, Fraiser ML, Marenco PJ, Dornbos SQ, Pruss SB. 2006Assessing the ecological dominance of Phanerozoic marine invertebrates. Palaios 21, 431-441. (10.2110/palo.2005.P05-017R) DOI
Raup DM. 1972Taxonomic diversity during the Phanerozoic. Science 177, 1065-1071. (10.1126/science.177.4054.1065) PubMed DOI
Raup DM. 1979Biases in the fossil record of species and genera. Bull. Carnegie Mus. Nat. Hist. 13, 85-91.
Smith AB. 2007Marine diversity through the Phanerozoic: problems and prospects. J. Geol. Soc. 164, 731-745. (10.1144/0016/76492006-184) DOI
Bokulich A. 2018Using models to correct data: paleodiversity and the fossil record. Synthese. Online First, 1–22. (10.1007/s11229-018-1820-x) DOI
Bokulich A, Parker W. 2021Data models, representation and adequacy-for-purpose. Eur. J. Phil. Sci. 11, 31. (10.1007/s13194-020-00345-2) PubMed DOI PMC
Close RA, Benson RBJ, Alroy J, Carrano MT, Cleary TJ, Dunne EM, Mannion PD, Uhen MD, Butler RJ. 2020The apparent exponential radiation of Phanerozoic land vertebrates is an artefact of spatial sampling biases. Proc. R. Soc. B 287, 20200372. (10.1098/rspb.2020.0372) PubMed DOI PMC
Raja NB, Dunne EM, Matiwane A, Khan TM, Nätscher PS, Ghilardi AM, Chattopadhyay D. 2021Colonial history and global economics distort our understanding of deep-time biodiversity. EarthArXiv. (10.31223/X5802N) PubMed DOI
Taylor PD, Di Martino E. 2014Why is the tropical Cenozoic fossil record so poor for bryozoans? Studi Trentini Sci. Nat. 94, 249-257.
Close RA, Benson RBJ, Saupe EE, Clapham ME, Butler RJ. 2020The spatial structure of Phanerozoic marine animal diversity. Science 368, 420-424. (10.1126/science.aay8309) PubMed DOI
Håkansson E, Thomsen E. 1999Benthic extinction and recovery patterns at the K/T boundary in shallow water carbonates, Denmark. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154, 67-85. (10.1016/S0031-0182(99)00087-5) DOI
Stilwell JD, Håkansson E. 2012Survival, but…! New tales of ‘dead clade walking’ from austral and boreal post-K–T assemblages. In Earth and life: global biodiversity, extinction intervals and biogeographic perturbations through time (ed. Talent JA), pp. 795-810. Dordrecht, The Netherlands: Springer Netherlands.
Peters SE, Zhang C, Livny M, Ré C. 2014A machine reading system for assembling synthetic paleontological databases. PLoS ONE 9, e113523. (10.1371/journal.pone.0113523) PubMed DOI PMC
Ezard THG, Purvis A. 2016Environmental changes define ecological limits to species richness and reveal the mode of macroevolutionary competition. Ecol. Lett. 19, 899-906. (10.1111/ele.12626) PubMed DOI PMC
Edie SM, Huang S, Collins KS, Roy K, Jablonski D. 2018Loss of biodiversity dimensions through shifting climates and ancient mass extinctions. Integr. Comp. Biol. 58, 1179-1190. (10.1093/icb/icy111) PubMed DOI
Jablonski D, Lidgard S, Taylor PD. 1997Comparative ecology of bryozoan radiations: origin of novelties in cyclostomes and cheilostomes. Palaios 12, 505-523. (10.2307/3515408) DOI
Schwaha TF, Ostrovsky AN, Wanninger A. 2020Key novelties in the evolution of the aquatic colonial phylum Bryozoa: evidence from soft body morphology. Biol. Rev. 95, 696-729. (10.1111/brv.12583) PubMed DOI PMC
Michel J, Borgomano J, Reijmer JJG. 2018Heterozoan carbonates: when, where and why? A synthesis on parameters controlling carbonate production and occurrences. Earth Sci. Rev. 182, 50-67. (10.1016/j.earscirev.2018.05.003) DOI
Benton MJ, Dunhill AM, Lloyd GT, Marx FG. 2011Assessing the quality of the fossil record: insights from vertebrates. Geol. Soc. Lond. Spec. Publ. 358, 63-94. (10.1144/SP358.6) DOI
Gould SJ, Calloway CB. 1980Clams and brachiopods: ships that pass in the night. Paleobiology 6, 383-396. (10.1017/S0094837300003572) DOI
Lidgard S, Di Martino E, Zágoršek K, Liow LH. 2021Data from: When fossil clades ‘compete’: local dominance, global diversification dynamics and causation. Dryad Digital Repository. (10.5061/dryad.zpc866t6s) PubMed DOI PMC
When fossil clades 'compete': local dominance, global diversification dynamics and causation