Paleozoic origins of cheilostome bryozoans and their parental care inferred by a new genome-skimmed phylogeny
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35353568
PubMed Central
PMC8967238
DOI
10.1126/sciadv.abm7452
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Phylogenetic relationships and the timing of evolutionary events are essential for understanding evolution on longer time scales. Cheilostome bryozoans are a group of ubiquitous, species-rich, marine colonial organisms with an excellent fossil record but lack phylogenetic relationships inferred from molecular data. We present genome-skimmed data for 395 cheilostomes and combine these with 315 published sequences to infer relationships and the timing of key events among c. 500 cheilostome species. We find that named cheilostome genera and species are phylogenetically coherent, rendering fossil or contemporary specimens readily delimited using only skeletal morphology. Our phylogeny shows that parental care in the form of brooding evolved several times independently but was never lost in cheilostomes. Our fossil calibration, robust to varied assumptions, indicates that the cheilostome lineage and parental care therein could have Paleozoic origins, much older than the first known fossil record of cheilostomes in the Late Jurassic.
Department of Biological Sciences Humboldt State University Arcata CA USA
Department of Biological Sciences National University of Singapore Singapore Singapore
Department of Geography Technical University of Liberec Liberec Czech Republic
Department of Marine Sciences University of Gothenburg Gothenburg Sweden
Department of Research and Exhibitions Iziko Museums of South Africa Cape Town South Africa
Department of Zoology Universidade Federal de Pernambuco Recife Brazil
Florida Museum of Natural History Gainesville FL USA
Geoscience Collections Oberösterreichische Landes Kultur GmbH Linz Austria
GeoZentrum Nordbayern Friedrich Alexander Universität Erlangen Nürnberg Erlangen Germany
Institute of Marine Sciences Barcelona Spain
Institute of Oceanology Polish Academy of Sciences Sopot Poland
International Centre for Island Technology Heriot Watt University Stromness UK
Marine Biological Association of the UK Plymouth UK
Marine Science University of Otago Dunedin New Zealand
Museum of Tropical Queensland Townsville Australia
National Institute of Water and Atmospheric Research Wellington New Zealand
Natural History Museum London UK
Natural History Museum University of Oslo Oslo Norway
School of Marine Biosciences Kitasato University Kanagawa Japan
Smithsonian Environmental Research Center TIburon CA USA
Station marine d'Endoume OSU Pytheas MIO GIS Posidonie Université Aix Marseille Marseille France
doi: 10.1126/sciadv.abp9344 PubMed
Zobrazit více v PubMed
Beck R. M. D., Baillie C., Improvements in the fossil record may largely resolve current conflicts between morphological and molecular estimates of mammal phylogeny. Proc. R. Soc. B Biol. Sci. 285, 20181632 (2018). PubMed PMC
Koch N. M., Parry L. A., Death is on our side: Paleontological data drastically modify phylogenetic hypotheses. Syst. Biol. 69, 1052–1067 (2020). PubMed
Ronquist F., Klopfstein S., Vilhelmsen L., Schulmeister S., Murray D. L., Rasnitsyn A. P., A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst. Biol. 61, 973–999 (2012). PubMed PMC
Bapst D. W., Schreiber H. A., Carlson S. J., Combined analysis of extant Rhynchonellida (Brachiopoda) using morphological and molecular data. Syst. Biol. 67, 32–48 (2018). PubMed PMC
Wood A. C. L., Probert P. K., Rowden A. A., Smith A. M., Complex habitat generated by marine bryozoans: A review of its distribution, structure, diversity, threats and conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 22, 547–563 (2012).
Taylor P. D., Wilson M. A., Palaeoecology and evolution of marine hard substrate communities. Earth Sci. Rev. 62, 1–103 (2003).
P. D. Taylor, Bryozoan Paleobiology (Wiley-Blackwell, 2020).
Xia F.-S., Zhang S.-G., Wang Z.-Z., The oldest bryozoans: New evidence from the Late Tremadocian (Early Ordovician) of East Yangtze Gorges in China. J. Paleo. 81, 1308–1326 (2007).
Zhang Z., Zhang Z., Ma J., Taylor P. D., Strotz L. C., Jacquet S. M., Skovsted C. B., Chen F., Han J., Brock G. A., Fossil evidence unveils an early Cambrian origin for Bryozoa. Nature 599, 251–255 (2021). PubMed PMC
Jackson J. B. C., Cheetham A. H., Evolutionary significance of morphospecies–A test with cheilostome Bryozoa. Science 248, 579–583 (1990). PubMed
Gordon D. P., Costello M. J., Bryozoa–Not a minor phylum. New Zeal. Sci. Rev. 73, 63–66 (2016).
Bock P. E., Gordon D., Phylum Bryozoa Ehrenberg, 1831. Zootaxa. 3703, 67–74 (2013). PubMed
Lidgard S., Di Martino E., Zágoršek K., Liow L. H., When fossil clades “compete”: Local dominance, global diversification dynamics and causation. Proc. R. Soc. B Biol. Sci. 288, 20211632 (2021). PubMed PMC
Liow L. H., Di Martino E., Krzeminska G., Ramsfjell M., Rust S., Taylor P. D., Voje K. L., Relative size predicts competitive outcome through 2 million years. Ecol. Lett. 20, 981–988 (2017). PubMed
Di Martino E., Liow L. H., Trait–fitness associations do not predict within-species phenotypic evolution over 2 million years. Proc. R. Soc. B Biol. Sci. 288, 20202047 (2021). PubMed PMC
Taylor P. D., Major radiation of cheilostome bryozoans: Triggered by the evolution of a new larval type? Hist. Biol. 1, 45–64 (1988).
P. E. Bock, Indexes to Bryozoan Taxa (2021); www.bryozoa.net).
Jablonski D., Lidgard S., Taylor P. D., Comparative ecology of bryozoan radiations: Origin of novelties in cyclostomes and cheilostomes. Palaios. 12, 505–523 (1997).
A. N. Ostrovsky, Evolution of Sexual Reproduction in Marine Invertebrates (Springer, 2013).
Orr R. J. S., Di Martino E., Gordon D. P., Ramsfjell M. H., Mello H. L., Smith A. M., Liow L. H., A broadly resolved molecular phylogeny of New Zealand cheilostome bryozoans as a framework for hypotheses of morphological evolution. Mol. Phylogenet. Evol. 161, 107172 (2021). PubMed
Di Martino E., Taylor P. D., Gordon D. P., Erect bifoliate species of Microporella (Bryozoa, Cheilostomata), fossil and modern. Eur. J. Taxon. 679, 1–31 (2020).
Di Martino E., Rosso A., Seek and ye shall find: New species and new records of Microporella (Bryozoa, Cheilostomatida) in the Mediterranean. Zookeys 1053, 1–42 (2021). PubMed PMC
Pagel M., Detecting correlated evolution on phylogenies: A general method for the comparative analysis of discrete characters. Proc. R. Soc. B Biol. Sci. 255, 37–45 (1994).
Maddison W. P., Midford P. E., Otto S. P., Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007). PubMed
Beaulieu J. M., O’Meara B. C., Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016). PubMed
Cheetham A. H., Jackson J. B. C., Hayek L.-A. C., Quantitative genetics of bryozoan phenotypic evoluion. I. Rate tests for random change versus selection in differentiation of living species. Evolution 47, 1526–1538 (1993). PubMed
Cheetham A. H., Jackson J. B. C., Hayek L.-A. C., Quantitative genetics of bryozoan phenotypic evolution. II. Analysis of selection and random change in fossil species using reconstructed genetic-parameters. Evolution 48, 360–375 (1994). PubMed
Schack C. R., Gordon D. P., Ryan K. G., Modularity is the mother of invention: A review of polymorphism in bryozoans. Biol. Rev. Camb. Philos. Soc. 94, 773–809 (2019). PubMed
Lidgard S., Carter M. C., Dick M. H., Gordon D. P., Ostrovsky A. N., Division of labor and recurrent evolution of polymorphisms in a group of colonial animals. Evol. Ecol. 26, 233–257 (2012).
Humphreys A. M., Barraclough T. G., The evolutionary reality of higher taxa in mammals. Proc. R. Soc. B Biol. Sci. 281, 20132750 (2014). PubMed PMC
Hendricks J. R., Saupe E. E., Myers C. E., Hermsen E. J., Allmon W. D., The generification of the fossil record. Paleobiology 40, 511–528 (2014).
N. Eldredge, S. J. Gould, in Models in Paleobiology, T. J. M. Schopf, Ed. (W.H. Freeman & Company, 1972), pp. 82–115.
Valentine J. W., Erwin D. H., Jablonski D., Developmental evolution of metazoan bodyplans: The fossil evidence. Dev. Biol. 173, 373–381 (1996). PubMed
L. H. Hyman, The Invertebrates: Smaller Coelomate Groups (McGraw-Hill, 1959).
McKinney F. K., Lidgard S., Sepkoski J. J. Jr., Taylor P. D. T., Decoupled temporal patterns of evolution and ecology in two post-Paleozoic clades. Science 281, 807–809 (1998). PubMed
Taylor P. D., An early cheilostome bryozoan from the Upper Jurassic of Yemen. N. Jb. Geol. Paläont. Abh. 191, 331–344 (1994).
Hao J., Li C., Sun X., Yang Q., Phylogeny and divergence time estimation of cheilostome bryozoans based on mitochodrial 16S rRNA sequences. Chin. Sci. Bull. 50, 1205–1211 (2005).
Taylor P. D., Bioimmured ctenostomes from the Jurassic and the origin of the cheilostome Bryozoa. Palaeontology 33, 19–34 (1990).
Gavryushkina A., Heath T. A., Ksepka D. T., Stadler T., Welch D., Drummond A. J., Bayesian total-evidence dating reveals the recent crown radiation of penguins. Syst. Biol. 66, 57–73 (2017). PubMed PMC
Strother P. K., Foster C., A fossil record of land plant origins from charophyte algae. Science 373, 792–796 (2021). PubMed
Laumer C. E., Fernandez R., Lemer S., Combosch D., Kocots K. M., Riesgo A., Andrade S. C. S., Sterrer W., Sorensen V M., Giribet G., Revisiting metazoan phylogeny with genomic sampling of all phyla. Proc. R. Soc. B Biol. Sci. 286, 20190831 (2019). PubMed PMC
Ostrovsky A. N., Gordon D. P., Lidgard S., Independent evolution of matrotrophy in the major classes of Bryozoa: Transitions among reproductive patterns and their ecological background. Mar. Ecol. Prog. Ser. 378, 113–124 (2009).
R. Ström, in Biology of Bryozoans, R. M. Woollacott, R. L. Zimmer, Eds. (Academic Press, 1977), pp. 23–55.
Stearns S. C., Trade-offs in life-history evolution. Funct. Ecol. 3, 259–268 (1989).
Strathmann R. R., The evolution and loss of feeding larval stages of marine invertebrates. Evolution 32, 894–906 (1978). PubMed
Jablonski D., Hunt G., Larval ecology, geographic range, and species survivorship in Cretaceous mollusks: Organismic versus species-level explanations. Am. Nat. 168, 556–564 (2006). PubMed
Heath T. A., Zwickl D. J., Kim J., Hillis D. M., Taxon sampling affects inferences of macroevolutionary processes from phylogenetic trees. Syst. Biol. 57, 160–166 (2008). PubMed
Pyron R. A., Post-molecular systematics and the future of phylogenetics. Trends Ecol. Evol. 30, 384–389 (2015). PubMed
Rodríguez-Trelles F., Tarrío R., Ayala F. J., A methodological bias toward overestimation of molecular evolutionary time scales. Proc. Natl. Acad. Sci. U.S.A. 99, 8112–8115 (2002). PubMed PMC
Finarelli J. A., Flynn J. J., Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): The effects of incorporating data from the fossil record. Syst. Biol. 55, 301–313 (2006). PubMed
Rabosky D. L., Goldberg E. E., Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 64, 340–355 (2015). PubMed
S. Andrews, FastQC: A quality control tool for high throughput sequence data (2010); www.bioinformatics.babraham.ac.uk/projects/fastqc.
F. Krueger, TrimGalore (2015); www.bioinformatics.babraham.ac.uk/projects/trim_galore.
Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S., Prjibelski A. D., Pyshkin A. V., Sirotkin A. V., Vyahhi N., Tesler G., Alekseyev M. A., Pevzner P. A., SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012). PubMed PMC
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J., Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). PubMed
Bernt M., Donath A., Jühling F., Externbrink F., Florentz C., Fritzsch G., Pütz J., Middendorf M., Stadler P. F., MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319 (2013). PubMed
Lagesen K., Hallin P., Rødland E. A., Staerfeldt H.-H., Rognes T., Ussery D. W., RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108 (2007). PubMed PMC
Orr R. J. S., Haugen M. N., Berning B., Bock P., Cumming R. L., Florence W. K., Hirose M., Di Martino E., Ramsfjell M. H., Sannum M. M., Smith A. M., Vieira L. M., Waeschenbach A., Liow L. H., A genome-skimmed phylogeny of a widespread bryozoan family, Adeonidae. BMC Evol. Biol. 19, 235 (2019). PubMed PMC
Orr R. J. S., Sannum M. M., Boessenkool S., Di Martino E., Gordon D. P., Mello H. L., Obst M., Ramsfjell M. H., Smith A. M., Liow L. H., A molecular phylogeny of historical and contemporary specimens of an under-studied micro-invertebrate group. Ecol. Evol. 11, 309–320 (2020). PubMed PMC
Orr R. J. S., Waeschenbach A., Enevoldsen E. L. G., Boeve J. P., Haugen M. N., Voje K. L., Porter J., Zágoršek K., Smith A. M., Gordon D. P., Liow L. H., Bryozoan genera Fenestrulina and Microporella no longer confamilial; multi-gene phylogeny supports separation. Zool. J. Linn. Soc. 186, 190–199 (2018).
Katoh K., Standley D. M., MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). PubMed PMC
W. P. Maddison, D. R. Maddison, Mesquite: A modular system for evolutionary analysis. Version 3.1 (2017); http://mesquiteproject.org.
Talavera G., Castresana J., Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007). PubMed
J. A. A. Nylander, catfasta2phyml (2010); https://github.com/nylander/catfasta2phyml.
Aberer A. J., Krompass D., Stamatakis A., Pruning rogue taxa improves phylogenetic accuracy: An efficient algorithm and webservice. Syst. Biol. 62, 162–166 (2013). PubMed PMC
Stamatakis A., RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006). PubMed
Lanfear R., Frandsen P. B., Wright A. M., Senfeld T., Calcott B., PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017). PubMed
Huson D. H., Scornavacca C., Dendroscope 3: An interactive tool for rooted phylogenetic trees and networks. Syst. Biol. 61, 1061–1067 (2012). PubMed
de Vienne D. M., Giraud T., Martin O. C., A congruence index for testing topological similarity between trees. Bioinformatics 23, 3119–3124 (2007). PubMed
Yang Z., PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007). PubMed
Ksepka D. T., Parham J. F., Allman J. F., Benton M. J., Carrano M. T., Cranston K. A., Donoghue P. C. J., Head J. J., Hermsen E. J., Irmis R. B., Joyce W. G., Kohli M., Lamm K. S., Leehr D., Patané J. S. L., Polly P. D., Phillips M. J., Smith N. A., Smith N. D., van Tuinen M., Ware J. L., Warnock R. C. M., The fossil calibration database—A new resource for divergence dating. Syst. Biol. 64, 853–859 (2015). PubMed
Benton M. J., Donoghue P. C.J., Asher R. J., Friedman M., Near T. J., Vinther J., Constraints on the timescale of animal evolutionary history. Palaeontol. Electron. 18.1.1FC, 1–105 (2015).
Paradis E., Schliep K., ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019). PubMed
Zhang Z., Holmer L. E., Chen F., Brock G. A., Ontogeny and evolutionary significance of a new acrotretide brachiopod genus from Cambrian Series 2 of South China. J. Syst. Palaeontol. 18, 1569–1588 (2020).
Vinogradov A. V., New fossil freshwater bryozoans from the Asiatic part of Russia and Kazakhstan. Paleontol. J. 30, 284–292 (1996).
Cohen K. M., Finney S. C., Gibbard P. L., Fan J.-X., The ICS international chronostratigraphic chart. Episodes 36, 199–204 (2013).
Pohowsky R. A., The boring ctenostomate Bryozoa: Taxonomy and paleobiology based on cavities in calcareous substrata. Bull. Am. Paleontol. 73, 1–192 (1978).
Todd J. A., Hagdorn H., First record of Muschelkalk Bryozoa: The earliest ctenostome body fossils. Sonderbände der Gesellschaft für Naturkd. Württemb. 2, 285–286 (1993).
P. D. Taylor, in Proceedings of the Seventeenth International Bryozoology Conference, R. Schmidt, C. M. Reid, D. P. Gordon, G. Walker-Smith, I. P. Percival, Eds. (2019), pp. 147–154.
J. E. Winston, A. H. Cheetham, in Living Fossils, N. Eldredge, S. M. Stanley, Eds. (Springer New York, 1984), pp. 257–265.
Puttick M. N., MCMCtreeR: Functions to prepare MCMCtree analyses and visualize posterior ages on trees. Bioinformatics 35, 5321–5322 (2019). PubMed
dos Reis M., Inoue J., Hasegawa M., Asher R. J., Donoghue P. C. J., Yang Z. H., Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc. R. Soc. B Biol. Sci. 279, 3491–3500 (2012). PubMed PMC
Waeschenbach A., Taylor P. D., Littlewood D. T. J., A molecular phylogeny of bryozoans. Mol. Phylogenet. Evol. 62, 718–735 (2012). PubMed
S. O. Martha, L. M. Vieira, J. Souto-Derungs, A. V. Grischenko, D. P. Gordon, A. N. Ostrovsky, in Phylum Bryozoa, T. Schwaha, Ed. (2021), pp. 317–433.
Gordon D. P., Apprehending novel biodiversity redux–Thirteen new genera and three new families of Zealandian Bryozoa, with the first living species of the Eocene–Miocene genus Vincularia Vinculariidae. J. Mar. Biol. Assoc. United Kingdom. 101, 371–398 (2021).
W. D. Lang, The Cretaceous Bryozoa (Polyzoa). The Cribrimorphs-part 1, Cat. Foss. Bryozoa Dep. Geol. Br. Museum Nat. Hist. 3 (1921).
Gordon D. P., The marine fauna of New Zealand: Bryozoa: Gymnolaemata (Cheilostomata Ascophorina) from the western South Island continental shelf and slope. Mem. New Zeal. Oceanogr. Inst. 97, 1–158 (1989).
D. P. Gordon, in 11th International Bryozoology Association Conference, A. Herrera Cubilla, J. B. C. Jackson, Eds. (Smithsonian Tropical Research Institute, Balboa, Republic of Panama, 2000), pp. 17–37.
P. E. Bock, P. L. Cook, in Biology and Paleobiology of Bryozoans, P. J. Hayward, J. S. Ryland, P. D. Taylor, Eds. (Olsen, & Olsen, 1994), pp. 33–36.
Harmer S. F., On the morphology of the Cheilostomata. Q. J. Microsc. Sci. 46, 263–350 (1902).
López-Gappa J., Pérez L. M., Almeida A. C. S., Iturra D., Gordon D. P., Vieira L. M., Three new cribrimorph bryozoans (order Cheilostomatida) from the early Miocene of Argentina, with a discussion on spinocystal shield morphologies. J. Paleo. 95, 568–582 (2021).
Ostrovsky A. N., Taylor P. D., Brood chambers constructed from spines in fossil and recent cheilostome bryozoans. Zool. J. Linn. Soc. 144, 317–361 (2005).
G. M. R. Levinsen, Morphological and Systematic Studies on the Cheilostomatous Bryozoa (Nationale Forfatterers Forlag, 1909).
Brown D. A., On the polyzoan genus Crepidacantha Levinsen. Bull. Br. Museum (Natural) Hist. Zool. 2, 243–263 (1954).
K. J. Tilbrook, Cheilostomatous Bryozoa from the Solomon Islands, in Santa Barbara Museum of Natural History Monographs 4 (Studies Biodiversity Number 3, 2006), pp. 1–386.
Gordon D. P., Braga G., Bryozoa: Living and fossil species of the catenicellid subfamilies Ditaxiporinae Stach and Vasignyellinae nov. Mémoires du Muséum Natl. d’Histoire Nat. 161, 55–85 (1994).
Caceres-Chamizo J. P., Sanner J., Tilbrook K. J., Ostrovsky A. N., Revision of the recent species of Exechonella Canu & Bassler in Duvergier, 1924 and Actisecos Canu & Bassler, 1927 (Bryozoa, Cheilostomata): Systematics, biogeography and evolutionary trends in skeletal morphology. Zootaxa 4305, 1–79 (2017).
D. P. Gordon, J. Sanner, in Bryozoan Studies 2019, P. N. Wyse Jackson, K. Zágoršek, Eds. (Czech Geological Survey, 2020), pp. 43–58.
Taylor P. D., Berning B., Wilson M. A., Reinterpretation of the Cambrian “bryozoan” Pywackia as an octocoral. J. Paleo. 87, 984–990 (2013).
Ma J., Taylor P. D., Xia F., Zhan R., The oldest known bryozoan: Prophyllodictya (Cryptostomata) from the lower Tremadocian (Lower Ordovician) of Liujiachang, south-western Hubei, central China. Palaeontology 58, 925–934 (2015).
Landing E., Antcliffe J. B., Brasier M. D., English A. B., Distinguishing Earth’s oldest known bryozoan (Pywackia, late Cambrian) from pennatulacean octocorals (Mesozoic—Recent). J. Paleo. 89, 292–317 (2015).
Hageman S. J., Ernst A., The last phylum: Occupation of Bryozoa morpho-ecospace (colony growth habits) during the early phase of the Great Ordovician Biodiversification Event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 534, 109270 (2019).
Hillmer G., A 300-million-year gap in the bryozoan fossil record. Naturwissenschaften 78, 123–125 (1991).
A. Ernst, in Handbook of Zoology: Phylum Bryozoa, T. Schwaha, Ed. (De Gruyter, 2021), p. 11–55.