Paleozoic origins of cheilostome bryozoans and their parental care inferred by a new genome-skimmed phylogeny

. 2022 Apr ; 8 (13) : eabm7452. [epub] 20220330

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35353568

Phylogenetic relationships and the timing of evolutionary events are essential for understanding evolution on longer time scales. Cheilostome bryozoans are a group of ubiquitous, species-rich, marine colonial organisms with an excellent fossil record but lack phylogenetic relationships inferred from molecular data. We present genome-skimmed data for 395 cheilostomes and combine these with 315 published sequences to infer relationships and the timing of key events among c. 500 cheilostome species. We find that named cheilostome genera and species are phylogenetically coherent, rendering fossil or contemporary specimens readily delimited using only skeletal morphology. Our phylogeny shows that parental care in the form of brooding evolved several times independently but was never lost in cheilostomes. Our fossil calibration, robust to varied assumptions, indicates that the cheilostome lineage and parental care therein could have Paleozoic origins, much older than the first known fossil record of cheilostomes in the Late Jurassic.

Centre for Ecological and Evolutionary Synthesis Department of Biosciences University of Oslo Oslo Norway

Department of Biological Sciences Humboldt State University Arcata CA USA

Department of Biological Sciences National University of Singapore Singapore Singapore

Department of Geography Technical University of Liberec Liberec Czech Republic

Department of Invertebrate Zoology Faculty of Biology Saint Petersburg State University Saint Petersburg Russia

Department of Marine Sciences University of Gothenburg Gothenburg Sweden

Department of Palaeontology Faculty of Earth Sciences Geography and Astronomy University of Vienna Vienna Austria

Department of Research and Exhibitions Iziko Museums of South Africa Cape Town South Africa

Department of Zoology Universidade Federal de Pernambuco Recife Brazil

Florida Museum of Natural History Gainesville FL USA

Geoscience Collections Oberösterreichische Landes Kultur GmbH Linz Austria

GeoZentrum Nordbayern Friedrich Alexander Universität Erlangen Nürnberg Erlangen Germany

Institute of Marine Sciences Barcelona Spain

Institute of Oceanology Polish Academy of Sciences Sopot Poland

International Centre for Island Technology Heriot Watt University Stromness UK

Marine Biological Association of the UK Plymouth UK

Marine Science University of Otago Dunedin New Zealand

Museum of Tropical Queensland Townsville Australia

National Institute of Water and Atmospheric Research Wellington New Zealand

Natural History Museum London UK

Natural History Museum University of Oslo Oslo Norway

School of Marine Biosciences Kitasato University Kanagawa Japan

Smithsonian Environmental Research Center TIburon CA USA

Station marine d'Endoume OSU Pytheas MIO GIS Posidonie Université Aix Marseille Marseille France

Komentář v

doi: 10.1126/sciadv.abp9344 PubMed

Zobrazit více v PubMed

Beck R. M. D., Baillie C., Improvements in the fossil record may largely resolve current conflicts between morphological and molecular estimates of mammal phylogeny. Proc. R. Soc. B Biol. Sci. 285, 20181632 (2018). PubMed PMC

Koch N. M., Parry L. A., Death is on our side: Paleontological data drastically modify phylogenetic hypotheses. Syst. Biol. 69, 1052–1067 (2020). PubMed

Ronquist F., Klopfstein S., Vilhelmsen L., Schulmeister S., Murray D. L., Rasnitsyn A. P., A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst. Biol. 61, 973–999 (2012). PubMed PMC

Bapst D. W., Schreiber H. A., Carlson S. J., Combined analysis of extant Rhynchonellida (Brachiopoda) using morphological and molecular data. Syst. Biol. 67, 32–48 (2018). PubMed PMC

Wood A. C. L., Probert P. K., Rowden A. A., Smith A. M., Complex habitat generated by marine bryozoans: A review of its distribution, structure, diversity, threats and conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 22, 547–563 (2012).

Taylor P. D., Wilson M. A., Palaeoecology and evolution of marine hard substrate communities. Earth Sci. Rev. 62, 1–103 (2003).

P. D. Taylor, Bryozoan Paleobiology (Wiley-Blackwell, 2020).

Xia F.-S., Zhang S.-G., Wang Z.-Z., The oldest bryozoans: New evidence from the Late Tremadocian (Early Ordovician) of East Yangtze Gorges in China. J. Paleo. 81, 1308–1326 (2007).

Zhang Z., Zhang Z., Ma J., Taylor P. D., Strotz L. C., Jacquet S. M., Skovsted C. B., Chen F., Han J., Brock G. A., Fossil evidence unveils an early Cambrian origin for Bryozoa. Nature 599, 251–255 (2021). PubMed PMC

Jackson J. B. C., Cheetham A. H., Evolutionary significance of morphospecies–A test with cheilostome Bryozoa. Science 248, 579–583 (1990). PubMed

Gordon D. P., Costello M. J., Bryozoa–Not a minor phylum. New Zeal. Sci. Rev. 73, 63–66 (2016).

Bock P. E., Gordon D., Phylum Bryozoa Ehrenberg, 1831. Zootaxa. 3703, 67–74 (2013). PubMed

Lidgard S., Di Martino E., Zágoršek K., Liow L. H., When fossil clades “compete”: Local dominance, global diversification dynamics and causation. Proc. R. Soc. B Biol. Sci. 288, 20211632 (2021). PubMed PMC

Liow L. H., Di Martino E., Krzeminska G., Ramsfjell M., Rust S., Taylor P. D., Voje K. L., Relative size predicts competitive outcome through 2 million years. Ecol. Lett. 20, 981–988 (2017). PubMed

Di Martino E., Liow L. H., Trait–fitness associations do not predict within-species phenotypic evolution over 2 million years. Proc. R. Soc. B Biol. Sci. 288, 20202047 (2021). PubMed PMC

Taylor P. D., Major radiation of cheilostome bryozoans: Triggered by the evolution of a new larval type? Hist. Biol. 1, 45–64 (1988).

P. E. Bock, Indexes to Bryozoan Taxa (2021); www.bryozoa.net).

Jablonski D., Lidgard S., Taylor P. D., Comparative ecology of bryozoan radiations: Origin of novelties in cyclostomes and cheilostomes. Palaios. 12, 505–523 (1997).

A. N. Ostrovsky, Evolution of Sexual Reproduction in Marine Invertebrates (Springer, 2013).

Orr R. J. S., Di Martino E., Gordon D. P., Ramsfjell M. H., Mello H. L., Smith A. M., Liow L. H., A broadly resolved molecular phylogeny of New Zealand cheilostome bryozoans as a framework for hypotheses of morphological evolution. Mol. Phylogenet. Evol. 161, 107172 (2021). PubMed

Di Martino E., Taylor P. D., Gordon D. P., Erect bifoliate species of Microporella (Bryozoa, Cheilostomata), fossil and modern. Eur. J. Taxon. 679, 1–31 (2020).

Di Martino E., Rosso A., Seek and ye shall find: New species and new records of Microporella (Bryozoa, Cheilostomatida) in the Mediterranean. Zookeys 1053, 1–42 (2021). PubMed PMC

Pagel M., Detecting correlated evolution on phylogenies: A general method for the comparative analysis of discrete characters. Proc. R. Soc. B Biol. Sci. 255, 37–45 (1994).

Maddison W. P., Midford P. E., Otto S. P., Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007). PubMed

Beaulieu J. M., O’Meara B. C., Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016). PubMed

Cheetham A. H., Jackson J. B. C., Hayek L.-A. C., Quantitative genetics of bryozoan phenotypic evoluion. I. Rate tests for random change versus selection in differentiation of living species. Evolution 47, 1526–1538 (1993). PubMed

Cheetham A. H., Jackson J. B. C., Hayek L.-A. C., Quantitative genetics of bryozoan phenotypic evolution. II. Analysis of selection and random change in fossil species using reconstructed genetic-parameters. Evolution 48, 360–375 (1994). PubMed

Schack C. R., Gordon D. P., Ryan K. G., Modularity is the mother of invention: A review of polymorphism in bryozoans. Biol. Rev. Camb. Philos. Soc. 94, 773–809 (2019). PubMed

Lidgard S., Carter M. C., Dick M. H., Gordon D. P., Ostrovsky A. N., Division of labor and recurrent evolution of polymorphisms in a group of colonial animals. Evol. Ecol. 26, 233–257 (2012).

Humphreys A. M., Barraclough T. G., The evolutionary reality of higher taxa in mammals. Proc. R. Soc. B Biol. Sci. 281, 20132750 (2014). PubMed PMC

Hendricks J. R., Saupe E. E., Myers C. E., Hermsen E. J., Allmon W. D., The generification of the fossil record. Paleobiology 40, 511–528 (2014).

N. Eldredge, S. J. Gould, in Models in Paleobiology, T. J. M. Schopf, Ed. (W.H. Freeman & Company, 1972), pp. 82–115.

Valentine J. W., Erwin D. H., Jablonski D., Developmental evolution of metazoan bodyplans: The fossil evidence. Dev. Biol. 173, 373–381 (1996). PubMed

L. H. Hyman, The Invertebrates: Smaller Coelomate Groups (McGraw-Hill, 1959).

McKinney F. K., Lidgard S., Sepkoski J. J. Jr., Taylor P. D. T., Decoupled temporal patterns of evolution and ecology in two post-Paleozoic clades. Science 281, 807–809 (1998). PubMed

Taylor P. D., An early cheilostome bryozoan from the Upper Jurassic of Yemen. N. Jb. Geol. Paläont. Abh. 191, 331–344 (1994).

Hao J., Li C., Sun X., Yang Q., Phylogeny and divergence time estimation of cheilostome bryozoans based on mitochodrial 16S rRNA sequences. Chin. Sci. Bull. 50, 1205–1211 (2005).

Taylor P. D., Bioimmured ctenostomes from the Jurassic and the origin of the cheilostome Bryozoa. Palaeontology 33, 19–34 (1990).

Gavryushkina A., Heath T. A., Ksepka D. T., Stadler T., Welch D., Drummond A. J., Bayesian total-evidence dating reveals the recent crown radiation of penguins. Syst. Biol. 66, 57–73 (2017). PubMed PMC

Strother P. K., Foster C., A fossil record of land plant origins from charophyte algae. Science 373, 792–796 (2021). PubMed

Laumer C. E., Fernandez R., Lemer S., Combosch D., Kocots K. M., Riesgo A., Andrade S. C. S., Sterrer W., Sorensen V M., Giribet G., Revisiting metazoan phylogeny with genomic sampling of all phyla. Proc. R. Soc. B Biol. Sci. 286, 20190831 (2019). PubMed PMC

Ostrovsky A. N., Gordon D. P., Lidgard S., Independent evolution of matrotrophy in the major classes of Bryozoa: Transitions among reproductive patterns and their ecological background. Mar. Ecol. Prog. Ser. 378, 113–124 (2009).

R. Ström, in Biology of Bryozoans, R. M. Woollacott, R. L. Zimmer, Eds. (Academic Press, 1977), pp. 23–55.

Stearns S. C., Trade-offs in life-history evolution. Funct. Ecol. 3, 259–268 (1989).

Strathmann R. R., The evolution and loss of feeding larval stages of marine invertebrates. Evolution 32, 894–906 (1978). PubMed

Jablonski D., Hunt G., Larval ecology, geographic range, and species survivorship in Cretaceous mollusks: Organismic versus species-level explanations. Am. Nat. 168, 556–564 (2006). PubMed

Heath T. A., Zwickl D. J., Kim J., Hillis D. M., Taxon sampling affects inferences of macroevolutionary processes from phylogenetic trees. Syst. Biol. 57, 160–166 (2008). PubMed

Pyron R. A., Post-molecular systematics and the future of phylogenetics. Trends Ecol. Evol. 30, 384–389 (2015). PubMed

Rodríguez-Trelles F., Tarrío R., Ayala F. J., A methodological bias toward overestimation of molecular evolutionary time scales. Proc. Natl. Acad. Sci. U.S.A. 99, 8112–8115 (2002). PubMed PMC

Finarelli J. A., Flynn J. J., Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): The effects of incorporating data from the fossil record. Syst. Biol. 55, 301–313 (2006). PubMed

Rabosky D. L., Goldberg E. E., Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 64, 340–355 (2015). PubMed

S. Andrews, FastQC: A quality control tool for high throughput sequence data (2010); www.bioinformatics.babraham.ac.uk/projects/fastqc.

F. Krueger, TrimGalore (2015); www.bioinformatics.babraham.ac.uk/projects/trim_galore.

Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S., Prjibelski A. D., Pyshkin A. V., Sirotkin A. V., Vyahhi N., Tesler G., Alekseyev M. A., Pevzner P. A., SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012). PubMed PMC

Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J., Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). PubMed

Bernt M., Donath A., Jühling F., Externbrink F., Florentz C., Fritzsch G., Pütz J., Middendorf M., Stadler P. F., MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319 (2013). PubMed

Lagesen K., Hallin P., Rødland E. A., Staerfeldt H.-H., Rognes T., Ussery D. W., RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108 (2007). PubMed PMC

Orr R. J. S., Haugen M. N., Berning B., Bock P., Cumming R. L., Florence W. K., Hirose M., Di Martino E., Ramsfjell M. H., Sannum M. M., Smith A. M., Vieira L. M., Waeschenbach A., Liow L. H., A genome-skimmed phylogeny of a widespread bryozoan family, Adeonidae. BMC Evol. Biol. 19, 235 (2019). PubMed PMC

Orr R. J. S., Sannum M. M., Boessenkool S., Di Martino E., Gordon D. P., Mello H. L., Obst M., Ramsfjell M. H., Smith A. M., Liow L. H., A molecular phylogeny of historical and contemporary specimens of an under-studied micro-invertebrate group. Ecol. Evol. 11, 309–320 (2020). PubMed PMC

Orr R. J. S., Waeschenbach A., Enevoldsen E. L. G., Boeve J. P., Haugen M. N., Voje K. L., Porter J., Zágoršek K., Smith A. M., Gordon D. P., Liow L. H., Bryozoan genera Fenestrulina and Microporella no longer confamilial; multi-gene phylogeny supports separation. Zool. J. Linn. Soc. 186, 190–199 (2018).

Katoh K., Standley D. M., MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). PubMed PMC

W. P. Maddison, D. R. Maddison, Mesquite: A modular system for evolutionary analysis. Version 3.1 (2017); http://mesquiteproject.org.

Talavera G., Castresana J., Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007). PubMed

J. A. A. Nylander, catfasta2phyml (2010); https://github.com/nylander/catfasta2phyml.

Aberer A. J., Krompass D., Stamatakis A., Pruning rogue taxa improves phylogenetic accuracy: An efficient algorithm and webservice. Syst. Biol. 62, 162–166 (2013). PubMed PMC

Stamatakis A., RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006). PubMed

Lanfear R., Frandsen P. B., Wright A. M., Senfeld T., Calcott B., PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017). PubMed

Huson D. H., Scornavacca C., Dendroscope 3: An interactive tool for rooted phylogenetic trees and networks. Syst. Biol. 61, 1061–1067 (2012). PubMed

de Vienne D. M., Giraud T., Martin O. C., A congruence index for testing topological similarity between trees. Bioinformatics 23, 3119–3124 (2007). PubMed

Yang Z., PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007). PubMed

Ksepka D. T., Parham J. F., Allman J. F., Benton M. J., Carrano M. T., Cranston K. A., Donoghue P. C. J., Head J. J., Hermsen E. J., Irmis R. B., Joyce W. G., Kohli M., Lamm K. S., Leehr D., Patané J. S. L., Polly P. D., Phillips M. J., Smith N. A., Smith N. D., van Tuinen M., Ware J. L., Warnock R. C. M., The fossil calibration database—A new resource for divergence dating. Syst. Biol. 64, 853–859 (2015). PubMed

Benton M. J., Donoghue P. C.J., Asher R. J., Friedman M., Near T. J., Vinther J., Constraints on the timescale of animal evolutionary history. Palaeontol. Electron. 18.1.1FC, 1–105 (2015).

Paradis E., Schliep K., ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019). PubMed

Zhang Z., Holmer L. E., Chen F., Brock G. A., Ontogeny and evolutionary significance of a new acrotretide brachiopod genus from Cambrian Series 2 of South China. J. Syst. Palaeontol. 18, 1569–1588 (2020).

Vinogradov A. V., New fossil freshwater bryozoans from the Asiatic part of Russia and Kazakhstan. Paleontol. J. 30, 284–292 (1996).

Cohen K. M., Finney S. C., Gibbard P. L., Fan J.-X., The ICS international chronostratigraphic chart. Episodes 36, 199–204 (2013).

Pohowsky R. A., The boring ctenostomate Bryozoa: Taxonomy and paleobiology based on cavities in calcareous substrata. Bull. Am. Paleontol. 73, 1–192 (1978).

Todd J. A., Hagdorn H., First record of Muschelkalk Bryozoa: The earliest ctenostome body fossils. Sonderbände der Gesellschaft für Naturkd. Württemb. 2, 285–286 (1993).

P. D. Taylor, in Proceedings of the Seventeenth International Bryozoology Conference, R. Schmidt, C. M. Reid, D. P. Gordon, G. Walker-Smith, I. P. Percival, Eds. (2019), pp. 147–154.

J. E. Winston, A. H. Cheetham, in Living Fossils, N. Eldredge, S. M. Stanley, Eds. (Springer New York, 1984), pp. 257–265.

Puttick M. N., MCMCtreeR: Functions to prepare MCMCtree analyses and visualize posterior ages on trees. Bioinformatics 35, 5321–5322 (2019). PubMed

dos Reis M., Inoue J., Hasegawa M., Asher R. J., Donoghue P. C. J., Yang Z. H., Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc. R. Soc. B Biol. Sci. 279, 3491–3500 (2012). PubMed PMC

Waeschenbach A., Taylor P. D., Littlewood D. T. J., A molecular phylogeny of bryozoans. Mol. Phylogenet. Evol. 62, 718–735 (2012). PubMed

S. O. Martha, L. M. Vieira, J. Souto-Derungs, A. V. Grischenko, D. P. Gordon, A. N. Ostrovsky, in Phylum Bryozoa, T. Schwaha, Ed. (2021), pp. 317–433.

Gordon D. P., Apprehending novel biodiversity redux–Thirteen new genera and three new families of Zealandian Bryozoa, with the first living species of the Eocene–Miocene genus Vincularia Vinculariidae. J. Mar. Biol. Assoc. United Kingdom. 101, 371–398 (2021).

W. D. Lang, The Cretaceous Bryozoa (Polyzoa). The Cribrimorphs-part 1, Cat. Foss. Bryozoa Dep. Geol. Br. Museum Nat. Hist. 3 (1921).

Gordon D. P., The marine fauna of New Zealand: Bryozoa: Gymnolaemata (Cheilostomata Ascophorina) from the western South Island continental shelf and slope. Mem. New Zeal. Oceanogr. Inst. 97, 1–158 (1989).

D. P. Gordon, in 11th International Bryozoology Association Conference, A. Herrera Cubilla, J. B. C. Jackson, Eds. (Smithsonian Tropical Research Institute, Balboa, Republic of Panama, 2000), pp. 17–37.

P. E. Bock, P. L. Cook, in Biology and Paleobiology of Bryozoans, P. J. Hayward, J. S. Ryland, P. D. Taylor, Eds. (Olsen, & Olsen, 1994), pp. 33–36.

Harmer S. F., On the morphology of the Cheilostomata. Q. J. Microsc. Sci. 46, 263–350 (1902).

López-Gappa J., Pérez L. M., Almeida A. C. S., Iturra D., Gordon D. P., Vieira L. M., Three new cribrimorph bryozoans (order Cheilostomatida) from the early Miocene of Argentina, with a discussion on spinocystal shield morphologies. J. Paleo. 95, 568–582 (2021).

Ostrovsky A. N., Taylor P. D., Brood chambers constructed from spines in fossil and recent cheilostome bryozoans. Zool. J. Linn. Soc. 144, 317–361 (2005).

G. M. R. Levinsen, Morphological and Systematic Studies on the Cheilostomatous Bryozoa (Nationale Forfatterers Forlag, 1909).

Brown D. A., On the polyzoan genus Crepidacantha Levinsen. Bull. Br. Museum (Natural) Hist. Zool. 2, 243–263 (1954).

K. J. Tilbrook, Cheilostomatous Bryozoa from the Solomon Islands, in Santa Barbara Museum of Natural History Monographs 4 (Studies Biodiversity Number 3, 2006), pp. 1–386.

Gordon D. P., Braga G., Bryozoa: Living and fossil species of the catenicellid subfamilies Ditaxiporinae Stach and Vasignyellinae nov. Mémoires du Muséum Natl. d’Histoire Nat. 161, 55–85 (1994).

Caceres-Chamizo J. P., Sanner J., Tilbrook K. J., Ostrovsky A. N., Revision of the recent species of Exechonella Canu & Bassler in Duvergier, 1924 and Actisecos Canu & Bassler, 1927 (Bryozoa, Cheilostomata): Systematics, biogeography and evolutionary trends in skeletal morphology. Zootaxa 4305, 1–79 (2017).

D. P. Gordon, J. Sanner, in Bryozoan Studies 2019, P. N. Wyse Jackson, K. Zágoršek, Eds. (Czech Geological Survey, 2020), pp. 43–58.

Taylor P. D., Berning B., Wilson M. A., Reinterpretation of the Cambrian “bryozoan” Pywackia as an octocoral. J. Paleo. 87, 984–990 (2013).

Ma J., Taylor P. D., Xia F., Zhan R., The oldest known bryozoan: Prophyllodictya (Cryptostomata) from the lower Tremadocian (Lower Ordovician) of Liujiachang, south-western Hubei, central China. Palaeontology 58, 925–934 (2015).

Landing E., Antcliffe J. B., Brasier M. D., English A. B., Distinguishing Earth’s oldest known bryozoan (Pywackia, late Cambrian) from pennatulacean octocorals (Mesozoic—Recent). J. Paleo. 89, 292–317 (2015).

Hageman S. J., Ernst A., The last phylum: Occupation of Bryozoa morpho-ecospace (colony growth habits) during the early phase of the Great Ordovician Biodiversification Event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 534, 109270 (2019).

Hillmer G., A 300-million-year gap in the bryozoan fossil record. Naturwissenschaften 78, 123–125 (1991).

A. Ernst, in Handbook of Zoology: Phylum Bryozoa, T. Schwaha, Ed. (De Gruyter, 2021), p. 11–55.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...