Electric field detection as floral cue in hoverfly pollination
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34548579
PubMed Central
PMC8455601
DOI
10.1038/s41598-021-98371-4
PII: 10.1038/s41598-021-98371-4
Knihovny.cz E-zdroje
- MeSH
- Diptera fyziologie MeSH
- elektřina * MeSH
- květy fyziologie MeSH
- opylení fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Pollinators can detect the color, shape, scent, and even temperature of the flowers they want to visit. Here, we present the previously unappreciated capacity of hoverflies (Eristalis tenax and Cheilosia albipila) to detect the electric field surrounding flowers. Using hoverflies as key dipteran pollinators, we explored the electrical interactions between flies and flowers-how a hoverfly acquired a charge and how their electrical sensing ability for target flowers contributed to nectar identification and pollination. This study revealed that rapid variations in a floral electric field were related to a nectar reward and increased the likelihood of the fly's return visits. We found that thoracic hairs played a role in the polarity of hoverfly charge, revealing their electro-mechanosensory capability, as in bumblebees (Bombus terrestris). Electrophysiological analysis of the hoverfly's antennae did not reveal neural sensitivity to the electric field, which favors the mechanosensory hairs as putative electroreceptive organs in both species of hoverflies.
Biology Department Faculty of Science King Khalid University P O Box 9004 Abha 61413 Saudi Arabia
Department of Biological Sciences College of Science University of Jeddah Jeddah Saudi Arabia
Department of Biotechnology Fatima Jinnah Women University Rawalpindi Pakistan
Department of Botany University of Gujarat Gujarat 50700 Pakistan
Department of Physics Allama Iqbal Open University Islamabad 44000 Pakistan
Zobrazit více v PubMed
Chittka L, Raine NE. Recognition of flowers by pollinators. Curr. Opin. Plant Biol. 2006;9:428–435. doi: 10.1016/j.pbi.2006.05.002. PubMed DOI
Raguso RA. Flowers as sensory billboards: Progress towards an integrated understanding of floral advertisement. Curr. Opin. Plant Biol. 2004;7:434–440. doi: 10.1016/j.pbi.2004.05.010. PubMed DOI
Goulson D, Stout JC, Hawson SA. Can flower constancy in nectaring butterflies be explained by Darwin's interference hypothesis? Oecologia. 1997;112:225–231. doi: 10.1007/s004420050304. PubMed DOI
Goulson D, Wright NP. Flower constancy in the hoverflies Episyrphus balteatus (Degeer) and Syrphus ribesii (L.) (Syrphidae) Behav. Ecol. 1998;9:213–219. doi: 10.1093/beheco/9.3.213. DOI
Von Arx M, Goyret J, Davidowitz G, Raguso RA. Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths. Proc. Natl. Acad. Sci. 2012;109:9471–9476. doi: 10.1073/pnas.1121624109. PubMed DOI PMC
Leonard AS, Dornhaus A, Papaj DR. Forget-me-not: Complex floral displays, inter-signal interactions, and pollinator cognition. Curr. Zool. 2011;57:215–224. doi: 10.1093/czoolo/57.2.215. DOI
Vaknin Y, Gan-Mor S, Bechar A, Ronen B, Eisikowitch D. The role of electrostatic forces in pollination. Plant Syst. Evol. 2000;222:133–142. doi: 10.1007/bf00984099. DOI
Bowker GE, Crenshaw HC. Electrostatic forces in wind-pollination—Part 2: Simulations of pollen capture. Atmos. Environ. 2007;41:1596–1603. doi: 10.1016/j.atmosenv.2006.10.048. DOI
Erickson E. Surface electric potentials on worker honeybees leaving and entering the hive. J. Apic. Res. 1975;14:141–147. doi: 10.1080/00218839.1975.11099818. DOI
Edwards D. Electrostatic charges on insects due to contact with different substrates. Can. J. Zool. 1962;40:579–584. doi: 10.1139/z62-051. DOI
Vaknin Y, Gan-Mor S, Bechar A, Ronen B, Eisikowitch D. Pollen and Pollination. Springer; 2000. pp. 133–142.
Eskov E, Sapozhnikov A. Mechanism of generation and perception of electric fields by honey bees. Biofizika. 1976;21:1097–1102. PubMed
Clarke D, Whitney H, Sutton G, Robert D. Detection and learning of floral electric fields by bumblebees. Science. 2013;340:66–69. doi: 10.1126/science.1230883. PubMed DOI
Bowker GE, Crenshaw HC. Electrostatic forces in wind-pollination—Part 1: Measurement of the electrostatic charge on pollen. Atmos. Environ. 2007;41:1587–1595. doi: 10.1016/j.atmosenv.2006.10.047. DOI
Gan-Mor S, Schwartz Y, Bechar A, Eisikowitch D, Manor G. Relevance of electrostatic forces in natural and artificial pollination. Can. Agric. Eng. 1995;37:189–194.
Colin M, Richard D, Chauzy S. Measurement of electric charges carried by bees: Evidence of biological variations. J. Bioelectr. 1991;10:17–32. doi: 10.3109/15368379109031397. DOI
Pinillos V, Cuevas J. Artificial pollination in tree crop production. Horticult. Rev. 2008;2:2.
Corbet SA, Beament J, Eisikowitch D. Are electrostatic forces involved in pollen transfer? Plant Cell Environ. 1982;5:125–129. doi: 10.1111/1365-3040.ep11571488. DOI
Inouye DW, Larson BM, Ssymank A, Kevan PG. Flies and flowers III: Ecology of foraging and pollination. J. Pollin. Ecol. 2015;16:115–133. doi: 10.26786/1920-7603(2015)15. DOI
Kanstrup J, Olesen JM. Plant-flower visitor interactions in a neotropical rain forest canopy: Community structure and generalisation level. The Scand. Assoc. Pollin. Ecol. honours knut Fægri. 2000;2:33–42.
Orford KA, Vaughan IP, Memmott J. The forgotten flies: The importance of non-syrphid Diptera as pollinators. Proc. R. Soc. B Biol. Sci. 2015;282:20142934. doi: 10.1098/rspb.2014.2934. PubMed DOI PMC
Sakurai A, Takahashi K. Flowering phenology and reproduction of the Solidago virgaurea L. complex along an elevational gradient on M t N orikura, central Japan. Plant Sp. Biol. 2017;32:270–278. doi: 10.1111/1442-1984.12153. DOI
Forup ML, Henson KS, Craze PG, Memmott J. The restoration of ecological interactions: Plant–pollinator networks on ancient and restored heathlands. J. Appl. Ecol. 2008;45:742–752. doi: 10.1111/j.1365-2664.2007.01390.x. DOI
Solomon, M. & Kendall, D. Pollination by the syrphid fly, Eristalis tenax. (1970).
Kendall D, Wilson D, Guttridge C, Anderson H. Testing Eristalis as a pollinator of covered crops. Long Ashton Res. Stn. Rep. 1971;1971:120–121.
Ohsawa R, Namai H. The effect of insect pollinators on pollination and seed setting in Brassica campestris cv. Nozawana and Brassica juncea cv Kikarashina. Jpn. J. Breed. 1987;37:453–463. doi: 10.1270/jsbbs1951.37.453. DOI
Jauker F, Wolters V. Hover flies are efficient pollinators of oilseed rape. Oecologia. 2008;156:819–823. doi: 10.1007/s00442-008-1034-x. PubMed DOI
Rader R, et al. Alternative pollinator taxa are equally efficient but not as effective as the honeybee in a mass flowering crop. J. Appl. Ecol. 2009;46:1080–1087. doi: 10.1111/j.1365-2664.2009.01700.x. DOI
Kalmijn AJ. The electric sense of sharks and rays. J. Exp. Biol. 1971;55:371–383. doi: 10.1242/jeb.55.2.371. PubMed DOI
Clarke D, Morley E, Robert D. The bee, the flower, and the electric field: Electric ecology and aerial electroreception. J. Comp. Physiol. A. 2017;203:737–748. doi: 10.1007/s00359-017-1176-6. PubMed DOI PMC
Greggers U, et al. Reception and learning of electric fields in bees. Proc. R. Soc. B Biol. Sci. 2013;280:20130528. doi: 10.1098/rspb.2013.0528. PubMed DOI PMC
Casas J, Dangles O. Physical ecology of fluid flow sensing in arthropods. Annu. Rev. Entomol. 2010;55:505–520. doi: 10.1146/annurev-ento-112408-085342. PubMed DOI
Tautz J, Rostás M. Honeybee buzz attenuates plant damage by caterpillars. Curr. Biol. 2008;18:R1125–R1126. doi: 10.1016/j.cub.2008.10.038. PubMed DOI
Bathellier B, Steinmann T, Barth FG, Casas J. Air motion sensing hairs of arthropods detect high frequencies at near-maximal mechanical efficiency. J. R. Soc. Interface. 2011;9:1131–1143. doi: 10.1098/rsif.2011.0690. PubMed DOI PMC
Newland PL, et al. Static electric field detection and behavioural avoidance in cockroaches. J. Exp. Biol. 2008;211:3682–3690. doi: 10.1242/jeb.019901. PubMed DOI
Sutton GP, Clarke D, Morley EL, Robert D. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields. Proc. Natl. Acad. Sci. 2016;113:7261–7265. doi: 10.1073/pnas.1601624113. PubMed DOI PMC
Wędzony M, Filek M. Changes of electric potential in pistils of Petunia hybrida Hort. and Brassica napus L. during pollination. Acta Physiol. Plantarum. 1998;20:291–297. doi: 10.1007/s11738-998-0061-x. DOI
Stout JC, Goulson D. The use of conspecific and interspecific scent marks by foraging bumblebees and honeybees. Anim. Behav. 2001;62:183–189. doi: 10.1006/anbe.2001.1729. DOI
Weiss MR. Floral color change: A widespread functional convergence. Am. J. Bot. 1995;82:167–185. doi: 10.1002/j.1537-2197.1995.tb11486.x. DOI
Waser NM, Price MV. Pollinator behaviour and natural selection for flower colour in Delphinium nelsonii. Nature. 1983;302:422. doi: 10.1038/302422a0. PubMed DOI
Shimozawa T, Murakami J, Kumagai T. Sensors and Sensing in Biology and Engineering. Springer; 2003. pp. 145–157.
Khan S, Hanif H. Diversity and fauna of hoverflies (Syrphidae) in Chakwal, Pakistan. Int. J of Zool. Stud. 2016;1:22–23.
Khan SA, Hanif H. First record and redescription of Cheilosia albipila syrphid flies from Punjab, Pakistan. Int. J. Zool. Res. 2016;1:2.
Shehzad A, et al. Faunistic study of hover flies (Diptera: Syrphidae) of Pakistan. Orient. Insects. 2017;51:197–220. doi: 10.1080/00305316.2016.1274275. DOI
Nicholas S, Thyselius M, Holden M, Nordström K. Rearing and long-term maintenance of eristalis tenax hoverflies for research studies. JoVE. 2018 doi: 10.3791/57711. PubMed DOI PMC
Gilbert FS. Foraging ecology of hoverflies: Morphology of the mouthparts in relation to feeding on nectar and pollen in some urban species. Ecol. Entomol. 1981;2:2.
Nicholas S, Thyselius M, Holden M, Nordström K. Rearing and long-term maintenance of Eristalis tenax hoverflies for research studies. J. Vis. Exp. JoVE. 2018;2:2. PubMed PMC
Hogg BN, Bugg RL, Daane KM. Attractiveness of common insectary and harvestable floral resources to beneficial insects. Biol. Control. 2011;56:76–84. doi: 10.1016/j.biocontrol.2010.09.007. DOI
McGonigle DF, Jackson CW, Davidson JL. Triboelectrification of houseflies (Musca domestica L.) walking on synthetic dielectric surfaces. J. Electrostat. 2002;54:167–177. doi: 10.1016/S0304-3886(01)00177-2. DOI
Koh, K., Montgomery, C., Clarke, D., Morley, E. & Robert, D. in Journal of Physics: Conference Series. 012001 (IOP Publishing).
Rycroft M, Israelsson S, Price C. The global atmospheric electric circuit, solar activity and climate change. J. Atmos. Solar Terr. Phys. 2000;62:1563–1576. doi: 10.1016/S1364-6826(00)00112-7. DOI
Whitney HM, Dyer A, Chittka L, Rands SA, Glover BJ. The interaction of temperature and sucrose concentration on foraging preferences in bumblebees. Naturwissenschaften. 2008;95:845–850. doi: 10.1007/s00114-008-0393-9. PubMed DOI
Stanković B, Davies E. Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato. FEBS Lett. 1996;390:275–279. doi: 10.1016/0014-5793(96)00672-2. PubMed DOI