Social status modulates the behavioral and physiological consequences of a chemical pollutant in animal groups
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34549857
DOI
10.1002/eap.2454
Knihovny.cz E-resources
- Keywords
- Salmo trutta, behavior, cortisol, dominance, ecotoxicology, exposure, fish, oxazepam, pharmaceutical, social status, trout,
- MeSH
- Stress, Physiological MeSH
- Environmental Pollutants * MeSH
- Trout physiology MeSH
- Social Environment MeSH
- Social Status MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Environmental Pollutants * MeSH
The social environment (i.e., the suite of social interactions that occur among individuals that can result in variation in social ranks) is a commonly overlooked aspect of biology when scientists evaluate the effects of chemical contaminants. The social environment, however, represents the arena in which individual-level performance shapes group- or population-level outcomes and may therefore mediate many of the ultimate consequences of chemicals for wildlife. Here, we evaluated the role that the social environment plays in determining the consequences of pollutant exposure. We exposed groups of juvenile brown trout (Salmo trutta) to an emerging pharmaceutical pollutant that is commonly detected in freshwaters (the benzodiazepine, oxazepam) and allowed them to form dominance hierarchies. Exposure affected dominant and subordinate fish differently, causing fish to become less aggressive at high doses and subordinate fish to become more competitively successful at low doses. These perturbations had further consequences for growth, fin damage, and survival. Exposure also modulated physiological stress in the hierarchy, and social status itself affected how much oxazepam was absorbed in tissues, potentially creating a dynamic feedback loop that further influences the asymmetric effects of exposure on differing social statuses. Many effects followed a "U-shaped" dose-response curve, highlighting the importance of nonlinear, low-dose effects. Altogether, we show that social structure in animal groups can interact with and modulate the effects of an environmental contaminant. We underscore the need to account for an organism's natural ecological context, including their social environment, in future experiments and environmental risk assessments to predict the effects of chemical contaminants on wildlife.
Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
Department of Biology University of Konstanz Konstanz Germany
Department of Collective Behaviour Max Planck Institute of Animal Behavior Konstanz Germany
See more in PubMed
Albrecht, B., P. K. Staiger, K. Hall, P. Miller, D. Best, and D. I. Lubman. 2014. Benzodiazepine use and aggressive behavior: a systematic review. Australian and New Zealand Journal of Psychiatry 48:1096-1114.
aus der Beek, T., F. A. Weber, A. Bergmann, S. Hickmann, I. Ebert, A. Hein, and A. Küster. 2016. Pharmaceuticals in the environment-global occurrences and perspectives. Environmental Toxicology and Chemistry 35:823-835.
Backström, T., J. Schjolden, Ø. Øverli, P. O. Thörnqvist, and S. Winberg. 2011. Stress effects on AVT and CRF systems in two strains of rainbow trout (Oncorhynchus mykiss) divergent in stress responsiveness. Hormones and Behavior 59:180-186.
Bernhardt, E. S., E. J. Rosi, and M. O. Gessner. 2017. Synthetic chemicals as agents of global change. Frontiers in Ecology and the Environment 15:84-90.
Blewett, T., D. L. MacLatchy, and C. M. Wood. 2013. The effects of temperature and salinity on 17-α-ethynylestradiol uptake and its relationship to oxygen consumption in the model euryhaline teleost (Fundulus heteroclitus). Aquatic Toxicology 127:61-71.
Boxall, A. B. A., et al. 2012. Pharmaceuticals and personal care products in the environment: What are the big questions? Environmental Health Perspectives 120:1221-1229.
Brodin, T., J. Fick, M. Jonsson, and J. Klaminder. 2013. Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science 339:814-815.
Brodin, T., J. Nordling, A. Lagesson, J. Klaminder, G. Hellström, B. Christensen, and J. Fick. 2017. Environmental relevant levels of a benzodiazepine (oxazepam) alters important behavioral traits in a common planktivorous fish, (Rutilus rutilus). Journal of Toxicology and Environmental Health, Part A 80:963-970.
Brooks, M. E., K. Kristensen, K. van Bentham, A. Magnusson, C. Berg, A. Nielsen, H. J. Skaug, M. Machler, and B. M. Bolker. 2017. glmmTMB Balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R Journal 9:378-400.
Calabrese, E. J. 2008. An assessment of anxiolytic drug screening tests: Hormetic dose responses predominate. Critical Reviews in Toxicology 38:489-542.
Coe, T. S., P. B. Hamilton, D. Hodgson, G. C. Paull, J. R. Stevens, K. Sumner, and C. R. Tyler. 2008. An environmental estrogen alters reproductive hierarchies, disrupting sexual selection in group-spawning fish. Environmental Science and Technology 42:5020-5025.
Creel, S. 2001. Social dominance and stress hormones. Trends in Ecology & Evolution 16:491-497.
Creel, S., N. M. Creel, M. G. L. Mills, and S. L. Monfort. 1997. Rank and reproduction in cooperatively breeding African wild dogs: behavioral and endocrine correlates. Behavioral Ecology 8:298-306.
Culbert, B. M., and K. M. Gilmour. 2016. Rapid recovery of the cortisol response following social subordination in rainbow trout. Physiology & Behavior 164:306-313.
Culbert, B. M., K. M. Gilmour, and S. Balshine. 2018. Stress axis regulation during social ascension in a group-living cichlid fish. Hormones and Behavior 103:121-128.
Culbert, B. M., K. M. Gilmour, and S. Balshine. 2019. Social buffering of stress in a group-living fish. Proceedings of the Royal Society B 286:20191626.
de Abreu, M. S., G. Koakoski, D. Ferreira, T. A. Oliveira, J. G. Santos da Rosa, D. Gusso, A. C. Varrone Giacomini, A. L. Piato, and L. J. G. Barcellos. 2014. Diazepam and fluoxetine decrease the stress response in zebrafish. PLoS ONE 9:1-5.
Dorie, V. 2016. Package ‘blme’. https://github.com/vdorie/blme
Drews, C. 1993. The concept and definition of dominance in animal behaviour. Behaviour 125:283-313.
Ellis, L. 1995. Dominance and reproductive success among nonhuman animals: a cross-species comparison. Ethology and Sociobiology 16:257-333.
Farach, F. J., L. D. Pruitt, J. J. Jun, A. B. Jerud, L. A. Zoellner, and P. P. Roy-Byrne. 2012. Pharmacological treatment of anxiety disorders: current treatments and future directions. Journal of Anxiety Disorders 26:833-843.
Fernandes, D., S. Schnell, and C. Porte. 2011. Can pharmaceuticals interfere with the synthesis of active androgens in male fish? An in vitro study. Marine Pollution Bulletin 62:2250-2253.
Fick, J., et al. 2017. Screening of benzodiazepines in thirty European rivers. Chemosphere 176:324-332.
Filby, A. L., G. C. Paull, F. Searle, M. Ortiz-Zarragoitia, and C. R. Tyler. 2012. Environmental estrogen-induced alterations of male aggression and dominance hierarchies in fish: a mechanistic analysis. Environmental Science and Technology 46:3472-3479.
Fretwell, S. D. 1972. Populations in a seasonal environment. Monographs in population biology 5. Princeton University Press, Princeton, New Jersey, USA.
Gilmour, K. M., J. D. DiBattista, and J. B. Thomas. 2005. Physiological causes and consequences of social status in salmonid fish. Integrative and Comparative Biology 45:263-273.
Gunnarsson, L., A. Jauhiainen, E. Kristiansson, O. Nerman, and D. G. J. Larsson. 2008. Evolutionary conservation of human drug targets in organisms used for environmental risk assessments. Environmental Science and Technology 42:5807-5813.
Hartig, F. 2019. DHARMa: residual diagnostics for hierarchical (multi-level / mixed) regression models. http://florianhartig.github.io/DHARMa/
Hellström, G., T. Brodin, M. Jonsson, H. Olsen, J. Leander, J. Fahlman, J. Fick, and J. Klaminder. 2020. Environmentally relevant concentrations of the common anxiolytic pharmaceutical oxazepam do not have acute effect on spawning behavior in mature male Atlantic salmon (Salmo salar) parr. Journal of Applied Ichthyology 36:105-112.
Hellström, G., J. Klaminder, F. Finn, L. Persson, A. Alanärä, M. Jonsson, J. Fick, and T. Brodin. 2016. GABAergic anxiolytic drug in water increases migration behaviour in salmon. Nature Communications 7:1-7.
Heynen, M., T. Backström, J. Fick, M. Jonsson, J. Klaminder, and T. Brodin. 2016. Home alone-The effects of isolation on uptake of a pharmaceutical contaminant in a social fish. Aquatic Toxicology 180:71-77.
Höjesjö, J., J. I. Johnsson, and T. Bohlin. 2002. Can laboratory studies on dominance predict fitness of young brown trout in the wild? Behavioral Ecology and Sociobiology 52:102-108.
Hoyle, I., B. Oidtmann, T. Ellis, J. Turnbull, B. North, J. Nikolaidis, and T. G. Knowles. 2007. A validated macroscopic key to assess fin damage in farmed rainbow trout (Oncorhynchus mykiss). Aquaculture 270:142-148.
Huntingford, F. A., and A. Turner. 1987. The Consequences of Animal Conflict. Pages 227-250 in Animal conflict. Chapman & Hall, London, UK.
Hurd, P. L. 2006. Resource holding potential, subjective resource value, and game theoretical models of aggressiveness signalling. Journal of Theoretical Biology 241:639-648.
Jonsson, B., S. Brockmark, and J. I. Johnsson. 2010. Reduced hatchery rearing density increases social dominance, postrelease growth, and survival in brown trout (Salmo trutta). Canadian Journal of Fisheries and Aquatic Science 67:288-295.
Jonsson, B., and N. Jonsson. 2011. Ecology of Atlantic salmon and brown trout: Habitat as a template for life histories. Springer, Dordrecht, The Netherlands.
Klaminder, J., T. Brodin, A. Sundelin, N. J. Anderson, J. Fahlman, M. Jonsson, and J. Fick. 2015. Long-term persistence of an anxiolytic drug (oxazepam) in a large freshwater lake. Environmental Science and Technology 49:10406-10412.
Korpi, E. R., G. Gründer, and H. Lüddens. 2002. Drug interactions at GABAA receptors. Progress in Neurobiology 67:113-159.
Kurvers, R. H. J. M., J. Krause, D. P. Croft, A. D. M. Wilson, and M. Wolf. 2014. The evolutionary and ecological consequences of animal social networks: emerging issues. Trends in Ecology & Evolution 29:326-335.
Loos, R., et al. 2013. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Research 47:6475-6487.
Lorenzi, V., R. Choe, and D. Schlenk. 2016. Effects of environmental exposure to diazepam on the reproductive behavior of fathead minnow, Pimephales promelas. Environmental Toxicology 31:561-568.
Mansournia, M. A., A. Geroldinger, S. Greenland, and G. Heinze. 2018. Separation in logistic regression: causes, consequences, and control. American Journal of Epidemiology 187:864-870.
Martin, J. M., M. Saaristo, M. G. Bertram, P. J. Lewis, T. L. Coggan, B. O. Clarke, and B. B. M. Wong. 2017. The psychoactive pollutant fluoxetine compromises antipredator behaviour in fish. Environmental Pollution 222:592-599.
Martin, J. M., M. Saaristo, H. Tan, M. G. Bertram, V. Nagarajan-Radha, D. K. Dowling, and B. B. M. Wong. 2019. Field-realistic antidepressant exposure disrupts group foraging dynamics in mosquitofish. Biology Letters 15:20190615.
McCallum, E. S., A. P. H. Bose, T. R. Warriner, and S. Balshine. 2017. An evaluation of behavioural endpoints: the pharmaceutical pollutant fluoxetine decreases aggression across multiple contexts in round goby (Neogobius melanostomus). Chemosphere 175:401-410.
McCallum, E. S., D. Cerveny, J. Fick, and T. Brodin. 2019. Slow-release implants for manipulating contaminant exposures in aquatic wildlife: a new tool for field ecotoxicology. Environmental Science and Technology 54:8282-8290.
McConnachie, S. H., K. V. Cook, D. A. Patterson, K. M. Gilmour, S. G. Hinch, A. P. Farrell, and S. J. Cooke. 2012. Consequences of acute stress and cortisol manipulation on the physiology, behavior, and reproductive outcome of female Pacific salmon on spawning grounds. Hormones and Behavior 62:67-76.
Miczek, K. A., E. W. Fish, and J. F. De Bold. 2003. Neurosteroids, GABAA receptors, and escalated aggressive behavior. Hormones and Behavior 44:242-257.
Mihic, S. J., and R. A. Harris. 2014. Sedatives and hypnotics. Pages 457-480 in L. L. Brunton, editor. The pharmacological basis of therapeutics. Twelfth edition. McGraw Hill, China.
OECD. 2019. Pharmaceutical residues in freshwater: hazards and policy responses. OECD, Paris, France.
Pelli, M., and V. P. Connaughton. 2015. Chronic exposure to environmentally-relevant concentrations of fluoxetine (Prozac) decreases survival, increases abnormal behaviors, and delays predator escape responses in guppies. Chemosphere 139:202-209.
R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/
Roff, D. A. 1996. The evolution of threshold traits in animals. Quarterly Review of Biology 71:3-35.
Saaristo, M., et al. 2018. Direct and indirect effects of chemical contaminants on the behaviour, ecology and evolution of wildlife. Proceedings of the Royal Society B 285:20181297.
Schjolden, J., D. Basic, and S. Winberg. 2009. Aggression in rainbow trout is inhibited by both MR and GR antagonists. Physiology & Behavior 98:625-630.
Sloman, K. A. 2007. Effects of trace metals on salmonid fish: The role of social hierarchies. Applied Animal Behaviour Science 104:326-345.
Sloman, K. A., and J. D. Armstrong. 2002. Physiological effects of dominance hierarchies: laboratory artefacts or natural phenomena? Journal of Fish Biology 61:1-23.
Sloman, K. A., D. Baker, S. Winberg, and R. W. Wilson. 2008. Are there physiological correlates of dominance in natural trout populations? Animal Behavior 76:1279-1287.
Sloman, K. A., G. Motherwell, K. I. O’Connor, and A. C. Taylor. 2000a. The effect of social stress on the Standard Metabolic Rate (SMR) of brown trout, Salmo trutta. Fish Physiology and Biochemistry 23:49-53.
Sloman, K. A., K. M. Gilmour, A. C. Taylor, and N. B. Metcalfe. 2000b. Physiological effects of dominance hierarchies within groups of brown trout, Salmo trutta, held under simulated natural conditions. Fish Physiology and Biochemistry 22:11-20.
Söffker, M., and C. R. Tyler. 2012. Endocrine disrupting chemicals and sexual behaviors in fish-a critical review on effects and possible consequences. Critical Reviews in Toxicology 42:653-668.
Straub, L., V. Strobl, and P. Neumann. 2020. The need for an evolutionary approach to ecotoxicology. Nature Ecology & Evolution 4:895.
Taborsky, M., and H. J. Brockmann. 2010. Alternative reproductive tactics and life history phenotypes. Pages 1-707 in P. Kappeler, editor. Animal behaviour: evolution and mechanisms. Springer-Verlag, Berlin, Germany.
Van Der Kooij, M. A., F. Hollis, L. Lozano, I. Zalachoras, S. Abad, O. Zanoletti, J. Grosse, I. Guillot de Suduiraut, and C. Sandi. 2018. Diazepam actions in the VTA enhance social dominance and mitochondrial function in the nucleus accumbens by activation of dopamine D1 receptors. Molecular Psychiatry 23:569-578.
Vossen, L. E., D. Cerveny, M. Österkrans, P. O. Thörnqvist, F. Jutfelt, J. Fick, T. Brodin, and S. Winberg. 2020. Chronic exposure to oxazepam pollution produces tolerance to anxiolytic effects in zebrafish (Danio rerio). Environmental Science and Technology 54:1760-1769.
Weinberger, J., and R. Klaper. 2014. Environmental concentrations of the selective serotonin reuptake inhibitor fluoxetine impact specific behaviors involved in reproduction, feeding and predator avoidance in the fish Pimephales promelas (fathead minnow). Aquatic Toxicology 151:77-83.
Psychoactive pollutant alters movement dynamics of fish in a natural lake system
Frontiers in quantifying wildlife behavioural responses to chemical pollution