Dominant KPNA3 Mutations Cause Infantile-Onset Hereditary Spastic Paraplegia
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
SCHO 1921/2-1
Deutsche Forschungsgemeinschaft
SPP1935
Deutsche Forschungsgemeinschaft
MEYS 8F20002
European Joint Programme on Rare Diseases
EJP RD COFUND-EJP N° 825575
European Union's Horizon 2020 research and innovation programme
DRO00064203
Ministerstvo Zdravotnictví Ceské Republiky
Seoul National University
PubMed
34564892
DOI
10.1002/ana.26228
Knihovny.cz E-resources
- MeSH
- alpha Karyopherins genetics MeSH
- Adult MeSH
- Phenotype MeSH
- Heterozygote MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Mutation genetics MeSH
- Child, Preschool MeSH
- Pedigree MeSH
- Exome Sequencing methods MeSH
- Spastic Paraplegia, Hereditary genetics MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Child, Preschool MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- alpha Karyopherins MeSH
- KPNA3 protein, human MeSH Browser
OBJECTIVE: Hereditary spastic paraplegia (HSP) is a highly heterogeneous neurologic disorder characterized by lower-extremity spasticity. Here, we set out to determine the genetic basis of an autosomal dominant, pure, and infantile-onset form of HSP in a cohort of 8 patients with a uniform clinical presentation. METHODS: Trio whole-exome sequencing was used in 5 index patients with infantile-onset pure HSP to determine the genetic cause of disease. The functional impact of identified genetic variants was verified using bioinformatics and complementary cellular and biochemical assays. RESULTS: Distinct heterozygous KPNA3 missense variants were found to segregate with the clinical phenotype in 8 patients; in 4 of them KPNA3 variants had occurred de novo. Mutant karyopherin-α3 proteins exhibited a variable pattern of altered expression level, subcellular distribution, and protein interaction. INTERPRETATION: Our genetic findings implicate heterozygous variants in KPNA3 as a novel cause for autosomal dominant, early-onset, and pure HSP. Mutant karyopherin-α3 proteins display varying deficits in molecular and cellular functions, thus, for the first time, implicating dysfunctional nucleocytoplasmic shuttling as a novel pathomechanism causing HSP. ANN NEUROL 2021;90:738-750.
Department of Pediatrics Seoul National University College of Medicine Seoul Republic of Korea
Department of Pediatrics University Medical Center Hamburg Eppendorf Hamburg Germany
Institute of Human Genetics University Medical Center Hamburg Eppendorf Hamburg Germany
Pediatric Genetics Clinic Schneider Children's Medical Center of Israel Petah Tikva Israel
See more in PubMed
Blackstone C. Hereditary spastic paraplegia. Handb Clin Neurol 2018;148:633-652.
Blackstone C. Early-onset hereditary spastic paraplegia: the possibility of a genetic diagnosis. Dev Med Child Neurol 2020;62:1011.
Boutry M, Morais S, Stevanin G. Update on the genetics of spastic paraplegias. Curr Neurol Neurosci Rep 2019;19:18.
Murala S, Nagarajan E, Bollu PC. Hereditary spastic paraplegia. Neurol Sci 2021;42:883-894.
Hedera P. Hereditary spastic paraplegia overview. In: Adam MP, Ardinger HH, Pagon RA, et al., eds. GeneReviews((R)). Seattle, WA, University of Washington; 1993.
Rosello M, Caro-Llopis A, Orellana C, et al. Hidden etiology of cerebral palsy: genetic and clinical heterogeneity and efficient diagnosis by next-generation sequencing. Pediatr Res 2020;11:284-288.
Blackstone C. Converging cellular themes for the hereditary spastic paraplegias. Curr Opin Neurobiol 2018;51:139-146.
Ferreira PA. The coming-of-age of nucleocytoplasmic transport in motor neuron disease and neurodegeneration. Cell Mol Life Sci 2019;76:2247-2273.
Tziortzouda P, Van Den Bosch L, Hirth F. Triad of TDP43 control in neurodegeneration: autoregulation, localization and aggregation. Nat Rev Neurosci 2021;2:197-208.
Zhao M, Kim JR, van Bruggen R, Park J. RNA-binding proteins in amyotrophic lateral sclerosis. Mol Cells 2018;41:818-829.
Chang CC, Hsia KC. More than a zip code: global modulation of cellular function by nuclear localization signals. FEBS J 2020;9:5569-5585.
Oka M, Yoneda Y. Importin alpha: functions as a nuclear transport factor and beyond. Proc Jpn Acad Ser B Phys Biol Sci 2018;94:259-274.
Mikhaleva S, Lemke EA. Beyond the transport function of import receptors: What's all the FUS about? Cell 2018;173:549-553.
Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat 2015;36:928-930.
Mahler EA, Johannsen J, Tsiakas K, et al. Exome sequencing in children. Dtsch Arztebl Int 2019;116:197-204.
Kircher M, Witten DM, Jain P, et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014;46:310-315.
Ioannidis NM, Rothstein JH, Pejaver V, et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet 2016;99:877-885.
Jagadeesh KA, Wenger AM, Berger MJ, et al. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Nat Genet 2016;48:1581-1586.
Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 2009;4:1073-1081.
Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods 2010;7:248-249.
Cheng F, Desai RJ, Handy DE, et al. Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat Commun 2018;9:2691.
Bis-Brewer DM, Danzi MC, Wuchty S, Zuchner S. A network biology approach to unraveling inherited axonopathies. Sci Rep 2019;9:1692.
Menche J, Sharma A, Kitsak M, et al. Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science 2015;347:1257601.
Lessel D, Schob C, Kury S, et al. De novo missense mutations in DHX30 impair global translation and cause a neurodevelopmental disorder. Am J Hum Genet 2017 Nov 2;101:716-724.
Miroci H, Schob C, Kindler S, et al. Makorin ring zinc finger protein 1 (MKRN1), a novel poly(A)-binding protein-interacting protein, stimulates translation in nerve cells. J Biol Chem 2012;287:1322-1334.
Schob C, Morellini F, Ohana O, et al. Cognitive impairment and autistic-like behaviour in SAPAP4-deficient mice. Transl Psychiatry 2019;9:7.
Pan YE, Kreienkamp HJ, Lohr C, Biologie UHF, Universität Hamburg Fakultät für Mathematik IuN. Funktionelle Analyse Von Krankheitassozierten CASK Missense Mutationen: Functional Analysis of Disease-associated CASK Missense Mutations: Universität Hamburg; 2020.
Sowa AS, Martin E, Martins IM, et al. Karyopherin alpha-3 is a key protein in the pathogenesis of spinocerebellar ataxia type 3 controlling the nuclear localization of ataxin-3. Proc Natl Acad Sci U S A 2018;115:E2624-E2633.
Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 2012;489:391-399.
Meszarosova AU, Putzova M, Cermakova M, et al. SPAST mutation spectrum and familial occurrence among Czech patients with pure hereditary spastic paraplegia. J Hum Genet 2016;61:845-850.
Sankhala RS, Lokareddy RK, Begum S, et al. Three-dimensional context rather than NLS amino acid sequence determines importin alpha subtype specificity for RCC1. Nat Commun 2017;8:979.
Springhower CE, Rosen MK, Chook YM. Karyopherins and condensates. Curr Opin Cell Biol 2020;64:112-123.
Chang WL, Tarn WY. A role for transportin in deposition of TTP to cytoplasmic RNA granules and mRNA decay. Nucleic Acids Res 2009;37:6600-6612.
Jäkel S, Mingot JM, Schwarzmaier P, et al. Importins fulfil a dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic domains. EMBO J 2002;21:377-386.