• This record comes from PubMed

Dominant KPNA3 Mutations Cause Infantile-Onset Hereditary Spastic Paraplegia

. 2021 Nov ; 90 (5) : 738-750. [epub] 20211014

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
SCHO 1921/2-1 Deutsche Forschungsgemeinschaft
SPP1935 Deutsche Forschungsgemeinschaft
MEYS 8F20002 European Joint Programme on Rare Diseases
EJP RD COFUND-EJP N° 825575 European Union's Horizon 2020 research and innovation programme
DRO00064203 Ministerstvo Zdravotnictví Ceské Republiky
Seoul National University

OBJECTIVE: Hereditary spastic paraplegia (HSP) is a highly heterogeneous neurologic disorder characterized by lower-extremity spasticity. Here, we set out to determine the genetic basis of an autosomal dominant, pure, and infantile-onset form of HSP in a cohort of 8 patients with a uniform clinical presentation. METHODS: Trio whole-exome sequencing was used in 5 index patients with infantile-onset pure HSP to determine the genetic cause of disease. The functional impact of identified genetic variants was verified using bioinformatics and complementary cellular and biochemical assays. RESULTS: Distinct heterozygous KPNA3 missense variants were found to segregate with the clinical phenotype in 8 patients; in 4 of them KPNA3 variants had occurred de novo. Mutant karyopherin-α3 proteins exhibited a variable pattern of altered expression level, subcellular distribution, and protein interaction. INTERPRETATION: Our genetic findings implicate heterozygous variants in KPNA3 as a novel cause for autosomal dominant, early-onset, and pure HSP. Mutant karyopherin-α3 proteins display varying deficits in molecular and cellular functions, thus, for the first time, implicating dysfunctional nucleocytoplasmic shuttling as a novel pathomechanism causing HSP. ANN NEUROL 2021;90:738-750.

Comment In

PubMed

Comment In

PubMed

See more in PubMed

Blackstone C. Hereditary spastic paraplegia. Handb Clin Neurol 2018;148:633-652.

Blackstone C. Early-onset hereditary spastic paraplegia: the possibility of a genetic diagnosis. Dev Med Child Neurol 2020;62:1011.

Boutry M, Morais S, Stevanin G. Update on the genetics of spastic paraplegias. Curr Neurol Neurosci Rep 2019;19:18.

Murala S, Nagarajan E, Bollu PC. Hereditary spastic paraplegia. Neurol Sci 2021;42:883-894.

Hedera P. Hereditary spastic paraplegia overview. In: Adam MP, Ardinger HH, Pagon RA, et al., eds. GeneReviews((R)). Seattle, WA, University of Washington; 1993.

Rosello M, Caro-Llopis A, Orellana C, et al. Hidden etiology of cerebral palsy: genetic and clinical heterogeneity and efficient diagnosis by next-generation sequencing. Pediatr Res 2020;11:284-288.

Blackstone C. Converging cellular themes for the hereditary spastic paraplegias. Curr Opin Neurobiol 2018;51:139-146.

Ferreira PA. The coming-of-age of nucleocytoplasmic transport in motor neuron disease and neurodegeneration. Cell Mol Life Sci 2019;76:2247-2273.

Tziortzouda P, Van Den Bosch L, Hirth F. Triad of TDP43 control in neurodegeneration: autoregulation, localization and aggregation. Nat Rev Neurosci 2021;2:197-208.

Zhao M, Kim JR, van Bruggen R, Park J. RNA-binding proteins in amyotrophic lateral sclerosis. Mol Cells 2018;41:818-829.

Chang CC, Hsia KC. More than a zip code: global modulation of cellular function by nuclear localization signals. FEBS J 2020;9:5569-5585.

Oka M, Yoneda Y. Importin alpha: functions as a nuclear transport factor and beyond. Proc Jpn Acad Ser B Phys Biol Sci 2018;94:259-274.

Mikhaleva S, Lemke EA. Beyond the transport function of import receptors: What's all the FUS about? Cell 2018;173:549-553.

Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat 2015;36:928-930.

Mahler EA, Johannsen J, Tsiakas K, et al. Exome sequencing in children. Dtsch Arztebl Int 2019;116:197-204.

Kircher M, Witten DM, Jain P, et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014;46:310-315.

Ioannidis NM, Rothstein JH, Pejaver V, et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet 2016;99:877-885.

Jagadeesh KA, Wenger AM, Berger MJ, et al. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Nat Genet 2016;48:1581-1586.

Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 2009;4:1073-1081.

Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods 2010;7:248-249.

Cheng F, Desai RJ, Handy DE, et al. Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat Commun 2018;9:2691.

Bis-Brewer DM, Danzi MC, Wuchty S, Zuchner S. A network biology approach to unraveling inherited axonopathies. Sci Rep 2019;9:1692.

Menche J, Sharma A, Kitsak M, et al. Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science 2015;347:1257601.

Lessel D, Schob C, Kury S, et al. De novo missense mutations in DHX30 impair global translation and cause a neurodevelopmental disorder. Am J Hum Genet 2017 Nov 2;101:716-724.

Miroci H, Schob C, Kindler S, et al. Makorin ring zinc finger protein 1 (MKRN1), a novel poly(A)-binding protein-interacting protein, stimulates translation in nerve cells. J Biol Chem 2012;287:1322-1334.

Schob C, Morellini F, Ohana O, et al. Cognitive impairment and autistic-like behaviour in SAPAP4-deficient mice. Transl Psychiatry 2019;9:7.

Pan YE, Kreienkamp HJ, Lohr C, Biologie UHF, Universität Hamburg Fakultät für Mathematik IuN. Funktionelle Analyse Von Krankheitassozierten CASK Missense Mutationen: Functional Analysis of Disease-associated CASK Missense Mutations: Universität Hamburg; 2020.

Sowa AS, Martin E, Martins IM, et al. Karyopherin alpha-3 is a key protein in the pathogenesis of spinocerebellar ataxia type 3 controlling the nuclear localization of ataxin-3. Proc Natl Acad Sci U S A 2018;115:E2624-E2633.

Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 2012;489:391-399.

Meszarosova AU, Putzova M, Cermakova M, et al. SPAST mutation spectrum and familial occurrence among Czech patients with pure hereditary spastic paraplegia. J Hum Genet 2016;61:845-850.

Sankhala RS, Lokareddy RK, Begum S, et al. Three-dimensional context rather than NLS amino acid sequence determines importin alpha subtype specificity for RCC1. Nat Commun 2017;8:979.

Springhower CE, Rosen MK, Chook YM. Karyopherins and condensates. Curr Opin Cell Biol 2020;64:112-123.

Chang WL, Tarn WY. A role for transportin in deposition of TTP to cytoplasmic RNA granules and mRNA decay. Nucleic Acids Res 2009;37:6600-6612.

Jäkel S, Mingot JM, Schwarzmaier P, et al. Importins fulfil a dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic domains. EMBO J 2002;21:377-386.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...