Repetitive Sequence Distribution on Saguinus, Leontocebus and Leontopithecus Tamarins (Platyrrhine, Primates) by Mapping Telomeric (TTAGGG) Motifs and rDNA Loci
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FFR-D15-161211
FFR (Fondo di Finanziamento alla Ricerca)
PubMed
34571721
PubMed Central
PMC8470041
DOI
10.3390/biology10090844
PII: biology10090844
Knihovny.cz E-zdroje
- Klíčová slova
- Leontocebus, Leontopithecus, Saguinus, heterochromatin, rDNA loci, tamarins, telomeric sequences,
- Publikační typ
- časopisecké články MeSH
Tamarins are a distinct group of small sized New World monkeys with complex phylogenetic relationships and poorly studied cytogenetic traits. In this study, we applied molecular cytogenetic analyses by fluorescence in situ hybridization with probes specific for telomeric sequences and ribosomal DNA loci after DAPI/CMA3 staining on metaphases from five tamarin species, namely Leontocebus fuscicollis, Leontopithecus rosalia, Saguinus geoffroyi, Saguinus mystax and Saguinus oedipus, with the aim to investigate the distribution of repetitive sequences and their possible role in genome evolution. Our analyses revealed that all five examined species show similar karyotypes, 2n = 46, which differ mainly in the morphology of chromosome pairs 16-17 and 19-22, due to the diverse distribution of rDNA loci, the amplification of telomeric-like sequences, the presence of heterochromatic blocks and/or putative chromosomal rearrangements, such as inversions. The differences in cytogenetic traits between species of tamarins are discussed in a comparative phylogenetic framework, and in addition to data from previous studies, we underline synapomorphies and apomorphisms that appeared during the diversification of this group of New World monkeys.
Department of Ecology Faculty of Science Charles University 12844 Prague Czech Republic
Institute of Molecular and Cellular Biology SB RAS 630090 Novosibirsk Russia
Zobrazit více v PubMed
Garbino G.S., Martins-Junior A.M. Phenotypic evolution in marmoset and tamarin monkeys (Cebidae, Callitrichinae) and a revised genus-level classification. Mol. Phylogenet. Evol. 2018;118:156–171. doi: 10.1016/j.ympev.2017.10.002. PubMed DOI
Cortés-Ortiz L. Molecular phylogenetics of the Callitrichidae with an emphasis on the marmosets and Callimico. In: Ford S.M., Porter L.M., Davis L.C., editors. The Smallest Anthropoids. Springer; Boston, MA, USA: 2009. pp. 3–24.
Matauschek C., Roos C., Heymann E.W. Mitochondrial phylogeny of tamarins (Saguinus Hoffmannsegg, 1807) with taxonomic and biogeographic implications for the S. nigricollis species group. Am. J. Phys. Anthropol. 2011;144:564–574. doi: 10.1002/ajpa.21445. PubMed DOI
Perelman P., Johnson W.E., Roos C., Seuanez H.N., Horvath J.E., Moreira M.A.M., Kessing B., Pontius J., Roelke M., Rumpler Y., et al. A molecular phylogeny of living primates. PLoS Genet. 2011;7:e1001342. doi: 10.1371/journal.pgen.1001342. PubMed DOI PMC
Buckner J.C., Lynch Alfaro J.W., Rylands A.B., Alfaro M.E. Biogeography of the marmosets and tamarins (Callitrichidae) Mol. Phylogenet. Evol. 2015;82:413–425. doi: 10.1016/j.ympev.2014.04.031. PubMed DOI
Benirschke K., Brownhill L.E. Further observations on marrow chimerism in marmosets. Cytogenetics. 1962;1:245–257. doi: 10.1159/000129734. PubMed DOI
Bedard M.T., Ma N.S.F., Jones T.C. Chromosome banding patterns and nucleolar organizing regions in three species of Callitrichidae (Saguinus oedipus, Saguinus fuscicollis and Callithrix jacchus) J. Med. Primatol. 1978;7:82–97. doi: 10.1159/000459791. PubMed DOI
Dutrillaux B., Couturier J., Viegas-Pequignot E. Evolution chromosomique des platyrrhiniens. Mammalia. 1986;50:57–81.
Dantas S.M.M.d.M., de Souza Barros R.M. Cytogenetic study of the genus Saguinus (Callithrichidae, Primates) Braz. J. Genet. 1997;20:649. doi: 10.1590/S0100-84551997000400014. DOI
Nagamachi C.Y., Pieczarka J.C. Chromosome studies of Saguinus midas niger (Callitrichidae, Primates) from Tucurui, Para, Brazil: Comparison with the karyotype of Callithrix jacchus. Am. J. Primatol. 1988;14:277–284. doi: 10.1002/ajp.1350140308. PubMed DOI
Nagamachi C., Pieczarka J., Schwarz M., Barros R., Mattevi M. Chromosomal similarities and differences between tamarins, Leontopithecus and Saguinus (Platyrrhini, Primates) Am. J. Primatol. 1997;43:265–276. doi: 10.1002/(SICI)1098-2345(1997)43:3<265::AID-AJP6>3.0.CO;2-V. PubMed DOI
Nagamachi C.Y., Pieczarka J.C., Muniz J.A., Barros R.M., Mattevi M.S. Proposed chromosomal phylogeny for the South American primates of the Callitrichidae family (Platyrrhini) Am. J. Primatol. 1999;49:133–152. doi: 10.1002/(SICI)1098-2345(199910)49:2<133::AID-AJP5>3.0.CO;2-6. PubMed DOI
Neusser M., Stanyon R., Bigoni F., Wienberg J., Muller S. Molecular cytotaxonomy of New World monkeys (Platyrrhini)—Comparative analysis of five species by multi-color chromosome painting gives evidence for a classification of Callimico goeldii within the family of Callitrichidae. Cytogenet. Cell Genet. 2001;94:206–215. doi: 10.1159/000048818. PubMed DOI
Gerbault-Serreau M., Bonnet-Garnier A., Richard F., Dutrillaux B. Chromosome painting comparison of Leontopithecus chrysomelas (Callitrichine, Platyrrhini) with man and its phylogenetic position. Chromosome Res. 2004;12:691–701. doi: 10.1023/B:CHRO.0000045754.43803.db. PubMed DOI
Stanyon R., Giusti D., Araújo N.P., Bigoni F., Svartman M. Chromosome painting of the red-handed tamarin (Saguinus midas) compared to other Callitrichinae monkeys. Genome. 2018;61:771–776. doi: 10.1139/gen-2018-0119. PubMed DOI
Dumas F., Sineo L., Ishida T. Taxonomic identification of Aotus (Platyrrhinae) through cytogenetics. Identificazione tassonomica di Aotus (Platyrrhinae) mediante la citogenetica. J. Biol. Res. 2015;88:65–66.
Scardino R., Milioto V., Proskuryakova A.A., Serdyukova N.A., Perelman P.L., Dumas F. Evolution of the human chromosome 13 synteny: Evolutionary rearrangements, plasticity, human disease genes and cancer breakpoints. Genes. 2020;11:383. doi: 10.3390/genes11040383. PubMed DOI PMC
Ahmad S.F., Singchat W., Jehangir M., Suntronpong A., Panthum T., Malaivijitnond S., Srikulnath K. Dark matter of primate genomes: Satellite DNA repeats and their evolutionary dynamics. Cells. 2020;9:2714. doi: 10.3390/cells9122714. PubMed DOI PMC
Dumas F., Cuttaia H., Sineo L. Chromosomal distribution of interstitial telomeric sequences in nine neotropical primates (Platyrrhini): Possible implications in evolution and phylogeny. J. Zool. Syst. Evol. Res. 2016;54:226–236. doi: 10.1111/jzs.12131. DOI
Mazzoleni S., Schillaci O., Sineo L., Dumas F. Distribution of interstitial telomeric sequences in primates and the pygmy tree shrew (Scandentia) Cytogenet. Genome Res. 2017;151:141–150. doi: 10.1159/000467634. PubMed DOI
Mazzoleni S., Rovatsos M., Schillaci O., Dumas F. Evolutionary insight on localization of 18S, 28S rDNA genes on homologous chromosomes in Primates genomes. Comp. Cytogenet. 2018;12:27–40. doi: 10.3897/compcytogen.v12i1.19381. PubMed DOI PMC
Milioto V., Vlah S., Mazzoleni S., Rovatsos M., Dumas F. Chromosomal localization of 18S–28S rDNA and (TTAGGG)n sequences in two south african dormice of the genus Graphiurus (Rodentia: Gliridae) Cytogenet. Genome Res. 2019;158:145–151. doi: 10.1159/000500985. PubMed DOI
Ruiz-Herrera A., Nergadze S.G., Santagostino M., Giulotto E. Telomeric repeats far from the ends: Mechanisms of origin and role in evolution. Cytogenet. Genome Res. 2008;122:219–228. doi: 10.1159/000167807. PubMed DOI
Swier V.J., Anwarali Khan F.A., Baker R.J. Do time, heterochromatin, NORs, or chromosomal rearrangements correlate with distribution of interstitial telomeric repeats in Sigmodon (cotton rats)? J. Hered. 2012;103:493–502. doi: 10.1093/jhered/ess029. PubMed DOI
Dumas F., Mazzoleni S. Neotropical primate evolution and phylogenetic reconstruction using chromosomal data. Eur. Zool. J. 2017;84:1–18. doi: 10.1080/11250003.2016.1260655. DOI
Scardino R., Mazzoleni S., Rovatsos M., Vecchioni L., Dumas F. Molecular cytogenetic characterization of the Sicilian endemic pond turtle Emys trinacris and the yellow-bellied slider Trachemys scripta scripta (Testudines, Emydidae) Genes. 2020;11:702. doi: 10.3390/genes11060702. PubMed DOI PMC
Baicharoen S., Hirai Y., Srikulnath K., Kongprom U., Hirai H. Hypervariability of nucleolus organizer regions in Bengal slow lorises, Nycticebus bengalensis (Primates, Lorisidae) Cytogenet. Genome Res. 2016;149:267–273. doi: 10.1159/000449145. PubMed DOI
Hirai H. Chromosome dynamics regulating genomic dispersion and alteration of Nucleolus Organizer Regions (NORs) Cells. 2020;9:971. doi: 10.3390/cells9040971. PubMed DOI PMC
Serfaty D.M.B., Carvalho N.D.M., Gross M.C., Gordo M., Schneider C.H. Differential chromosomal organization between Saguinus midas and Saguinus bicolor with accumulation of differences in the repetitive sequence DNA. Genetica. 2017;145:359–369. doi: 10.1007/s10709-017-9971-0. PubMed DOI
Meyne J., Baker R.J., Hobart H.H., Hsu T.C., Ryder O.A., Ward O.G., Moyzis R.K. Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma. 1990;99:3–10. doi: 10.1007/BF01737283. PubMed DOI
Rovatsos M., Kratochvíl L., Altmanová M., Johnson Pokorná M. Interstitial telomeric motifs in squamate reptiles: When the exceptions outnumber the rule. PLoS ONE. 2015;10:e0134985. doi: 10.1371/journal.pone.0134985. PubMed DOI PMC
Small M.F., Stanyon R., Smith D.G., Sineo L. High-resolution chromosomes of rhesus macaques (Macaca mulatta) Am. J. Primatol. 1985;9:63–67. doi: 10.1002/ajp.1350090107. PubMed DOI
Levan A., Fredga K., Sandberg A.A. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI
Lemskaya N.A., Kulemzina A.I., Beklemisheva V.R., Biltueva L.S., Proskuryakova A.A., Hallenbeck J.M., Perelman P.L., Graphodatsky A.S. A combined banding method that allows the reliable identification of chromosomes as well as differentiation of AT-and GC-rich heterochromatin. Chromosome Res. 2018;26:307–315. doi: 10.1007/s10577-018-9589-9. PubMed DOI
Dumas F., Sineo L. The evolution of human synteny 4 by mapping sub-chromosomal specific probes in Primates. Caryologia. 2014;67:281–291. doi: 10.1080/0144235X.2014.974357. DOI
Fernàndez R., Barragàn M., Bullejos M., Marchal J., Diaz de la Guardia R., Sanchez A. New C-band protocol by heat denaturation in the presence of formamide. Hereditas. 2002;137:145–148. doi: 10.1034/j.1601-5223.2002.01672.x. PubMed DOI