Molecular Cytogenetic Characterization of the Sicilian Endemic Pond Turtle Emys trinacris and the Yellow-Bellied Slider Trachemys scripta scripta (Testudines, Emydidae)

. 2020 Jun 25 ; 11 (6) : . [epub] 20200625

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32630506

Turtles, a speciose group consisting of more than 300 species, demonstrate karyotypes with diploid chromosome numbers ranging from 2n = 26 to 2n = 68. However, cytogenetic analyses have been conducted only to 1/3rd of the turtle species, often limited to conventional staining methods. In order to expand our knowledge of the karyotype evolution in turtles, we examined the topology of the (TTAGGG)n telomeric repeats and the rDNA loci by fluorescence in situ hybridization (FISH) on the karyotypes of two emydids: the Sicilian pond turtle, Emys trinacris, and the yellow-bellied slider, Trachemys scripta scripta (family Emydidae). Furthermore, AT-rich and GC-rich chromosome regions were detected by DAPI and CMA3 stains, respectively. The cytogenetic analysis revealed that telomeric sequences are restricted to the terminal ends of all chromosomes and the rDNA loci are localized in one pair of microchromosomes in both species. The karyotype of the Sicilian endemic E. trinacris with diploid number 2n = 50, consisting of 13 pairs of macrochromosomes and 12 pairs of microchromosomes, is presented here for first time. Our comparative examination revealed similar cytogenetic features in Emys trinacris and the closely related E. orbicularis, as well as to other previously studied emydid species, demonstrating a low rate of karyotype evolution, as chromosomal rearrangements are rather infrequent in this group of turtles.

Zobrazit více v PubMed

Uetz P., Freed P., Hošek J. The Reptile Database. [(accessed on 28 May 2020)]; Available online: http://www.reptile-database.org.

Parham J.F., Papenfuss T.J., van Dijk P.P., Wilson B.S., Marte C., Rodriguez-Schettino L., Simison W.B. Genetic introgression and hybridization in Antillean freshwater turtles (Trachemys) revealed by coalescent analyses of mitochondrial and cloned nuclear markers. Mol. Phylogenet. Evol. 2013;67:176–187. doi: 10.1016/j.ympev.2013.01.004. PubMed DOI

Parham J.F., Papenfuss T.J., Buskirk J.R., Parra-Olea G., Chen J.Y., Simison W.B. Trachemys ornata or not ornata: Reassessment of a taxonomic revision for Mexican Trachemys. Proc. Calif. Acad. Sci. 2015;62:359–367.

Rogner M. European Pond Turtle: Emys Orbicularis. Chelonian Library, Edition Chimaira; Frankfurt, Germany: 2009.

Gaffney E.S., Meylan P.A. In: A Phylogeny of Turtles in: The Phylogeny and Classification of Tetrapods. Benton M.J., editor. Clarendon; Oxford, UK: 1988. pp. 157–219.

Marrone F., Sacco F., Arizza V., Arculeo M. Amendment of the type locality of the endemic Sicilian pond turtle Emys trinacris, Fritz et al. 2005, with some notes on the highest altitude reached by the species (Testudines, Emydidae) Acta Herpetol. 2016;11:63–65.

Vamberger M., Fritz U. Big data can cause big mistakes: Using the Societas Europaea Herpetologica atlas by Sillero et al. (2014), the distribution of Emys orbicularis will be misunderstood. Biologia. 2018;73:281–283. doi: 10.2478/s11756-018-0033-6. DOI

Feldman C.R., Parham J.F. Molecular phylogenetics of emydine turtles: Taxonomic revision and the evolution of shell kinesis. Mol. Phylogenet. Evol. 2002;22:388–398. doi: 10.1006/mpev.2001.1070. PubMed DOI

Fritz U., Schmidt C., Ernst C.H. Competing generic concepts for Blanding’s, Pacific and European pond turtles (Emydoidea, Actinemys and Emys)—Which is best? Zootaxa. 2011;2791:41–53. doi: 10.11646/zootaxa.2791.1.3. DOI

Seidel M.E., Ernst C.H. A systematic review of the turtle family Emydidae. Vertebr. Zool. 2017;67:1–122.

D’Angelo S., Pennisi M.G., Lo Valvo M., Fritz U. Variation of Sicilian pond turtles, Emys trinacris—What makes a species cryptic? Amphib-Reptil. 2006;27:513–529. doi: 10.1163/156853806778877095. DOI

Arizza V., Russo D., Marrone F., Sacco F., Arculeo M. Morphological characterization of the blood cells in the endangered endemic pond turtle, Emys trinacris (Testudines: Emydidae) Ital. J. Zool. 2014;81:344–353. doi: 10.1080/11250003.2014.938371. DOI

Fritz U., Fattizzo T., Guicking D., Tripepi S., Pennisi M.G., Lenk P., Joger U., Wink M. A new cryptic species of pond turtle from southern Italy, the hottest spot in the range of the genus Emys. Zool. Scr. 2005;34:351–371. doi: 10.1111/j.1463-6409.2005.00188.x. DOI

Stuckas H., Velo-Antón G., Fahd S., Kalboussi M., Rouag R., Arculeo M., Marrone F., Sacco F., Vamberger M., Fritz U. Where are you from, stranger? The enigmatic biogeography of North African pond turtles (Emys orbicularis) Org. Divers. Evol. 2014;14:295–306. doi: 10.1007/s13127-014-0168-4. DOI

Vamberger M., Stuckas H., Sacco F., D’Angelo S., Arculeo M., Cheylan M., Corti C., Lo Valvo M., Marrone F., Wink M., et al. Differences in gene flow in a twofold secondary contact zone of pond turtles in southern Italy (Testudines: Emydidae: Emys orbicularis galloitalica, E. o. hellenica, E. trinacris) Zool. Scr. 2015;44:233–249. doi: 10.1111/zsc.12102. DOI

Marrone F., Sacco F., Kehlmaier C., Arizza V., Arculeo M. Some like it cold: The glossiphoniid parasites of the Sicilian endemic pond turtle Emys trinacris (Testudines, Emydidae), an example of ‘parasite inertia’? J. Zool. Syst. Evol. Res. 2016;54:60–66. doi: 10.1111/jzs.12117. DOI

Olmo E., Signorino G.G. Chromorep: A Reptile Chromosomes Database. [(accessed on 14 April 2020)]; Available online: http://chromorep.univpm.it.

Bickham J.W., Baker R.J. Chromosome homology and evolution of emydid turtles. Chromosoma. 1976;54:201–219. doi: 10.1007/BF00293451. PubMed DOI

Bickham J.W., Carr J.L. Taxonomy and phylogeny of the higher categories of Cryptodiran turtles based on a cladistics analysis of chromosomal data. Copeia. 1983;4:918–932. doi: 10.2307/1445093. DOI

Cleiton F., Giuliano-Caetano L. Cytogenetic characterization of two turtle species: Trachemys dorbigni and Trachemys scripta elegans. Caryologia. 2008;61:253–257. doi: 10.1080/00087114.2008.10589637. DOI

Iannucci A., Svartman M., Bellavita M., Chelazzi G., Stanyon R., Ciofi C. Insights into emydid turtle cytogenetics: The european pond turtle as a model species. Cytogenet. Genome Res. 2019;157:166–171. doi: 10.1159/000495833. PubMed DOI

Montiel E.E., Badenhorst D., Lee L.S., Literman R., Trifonov V., Valenzuela N. Cytogenetic insights into the evolution of chromosomes and sex determination reveal striking homology of turtle sex chromosomes to amphibian autosomes. Cytogenet. Genome Res. 2016;148:292–304. doi: 10.1159/000447478. PubMed DOI

Montiel E.E., Badenhorst D., Tamplin J., Burke R., Valenzuela N. Discovery of youngest sex chromosomes reveals first case of convergent co-option of ancestral autosomes in turtles. Chromosoma. 2017;126:105–113. doi: 10.1007/s00412-016-0576-7. PubMed DOI

Valenzuela N., Badenhorst D., Montiel E.E., Literman R. Molecular cytogenetic search for cryptic sex chromosomes in painted turtles Chrysemys picta. Cytogenet. Genome Res. 2014;144:39–46. doi: 10.1159/000366076. PubMed DOI

Martinez P.A., Boeris J.M., Sánchez J., Pastori M.C., Bolzán A.D., Ledesma M.A. Karyotypic characterization of Trachemys dorbigni (Testudines: Emydidae) and Chelonoidis (Geochelone) donosobarrosi (Testudines: Testudinidae), two species of cryptodiran turtles from Argentina. Genetica. 2009;137:277–283. doi: 10.1007/s10709-009-9377-8. PubMed DOI

Kasai F., O’Brien P.C.M., Martin S., Ferguson-Smith M.A. Extensive homology of chicken macrochromosomes in the karyotypes of Trachemys scripta elegans and Crocodylus niloticus revealed by chromosome painting despite long divergence times. Cytogenet. Genome Res. 2012;136:303–307. doi: 10.1159/000338111. PubMed DOI

Badenhorst D., Hillier L.W., Literman R., Montiel E.E., Radhakrishnan S., Shen Y., Minx P., Janes D.E., Warren W.C., Edwards S.V., et al. Physical mapping and refinement of the painted turtle genome (Chrysemys picta) inform amniote genome evolution and challenge turtle-bird chromosomal conservation. Genome Biol. Evol. 2015;7:2038–2050. doi: 10.1093/gbe/evv119. PubMed DOI PMC

Picone B., Dumas F., Stanyon R., Lannino A., Bigoni F., Privitera O., Sineo L. Exploring evolution in 298 Ceboidea (Platyrrhini, Primates) by Williams-Beuren Probe (HSA 7q11.23) chromosome mapping. Folia Primatol. 2008;79:417–427. doi: 10.1159/000151236. PubMed DOI

Dumas F., Houck M., Bigoni F., Perelman P., Romanenko S., Stanyon R. Chromosome painting of the.pygmy tree shrew shows that no derived cytogenetic traits link primates and scandentia. Cytogenet. Genome Res. 2012;136:175–179. doi: 10.1159/000336976. PubMed DOI

Dumas F., Stanyon R., Sineo L., Stone G., Bigoni F. Phylogenomics of species from four genera of New World monkeys by flow sorting and reciprocal chromosome painting. BMC Evol. Boil. 2007;7:S11. doi: 10.1186/1471-2148-7-S2-S11. PubMed DOI PMC

Dumas F., Sineo L. Chromosomal dynamics in platyrrhinae by mapping BACs probes. J. Biol. Res. 2012;LXXXV:299–301.

Dumas F., Sineo L. Chromosomal dynamics in Cercopithecini studied by Williams-Beuren probe mapping. Caryologia. 2010;63:435–442.

Dumas F., Sineo L. The evolution of human synteny 4 by mapping sub-chromosomal specific probes in Primates. Caryologia. 2014;67:281–291. doi: 10.1080/0144235X.2014.974357. DOI

Scardino R., Milioto V., Proskuryakova A.A., Serdyukova N.A., Perelman P.L., Dumas F. Evolution of the human chromosome 13 synteny: Evolutionary rearrangements, plasticity, human disease genes and cancer breakpoints. Genes. 2020;11:383. doi: 10.3390/genes11040383. PubMed DOI PMC

Dumas F., Sineo L., Ishida T. Taxonomic identification of Aotus (Platyrrhinae) through cytogenetics | Identificazione tassonomica di Aotus (Platyrrhinae) mediante la citogenetica. J. Biol. Res. 2015;88:65–66.

Dumas F., Mazzoleni S. Neotropical primate evolution and phylogenetic reconstruction using chromosomal data. Eur. Zoöl. J. 2017;84:1–18. doi: 10.1080/11250003.2016.1260655. DOI

Rovatsos M., Kratochvíl L., Altmanová M., Johnson Pokorná M. Interstitial telomeric motifs in squamate reptiles: When the exceptions outnumber the rule. PLoS ONE. 2015;10:e0134985. doi: 10.1371/journal.pone.0134985. PubMed DOI PMC

Matsubara K., Uno Y., Srikulnath K., Matsuda Y., Miller E., Olsson M. No interstitial telomeres on autosomes but remarkable amplification of telomeric repeats on the W sex chromosome in the sand lizard (Lacerta agilis) J. Hered. 2015;106:753–757. doi: 10.1093/jhered/esv083. PubMed DOI

Dumas F., Cuttaia H., Sineo L. Chromosomal distribution of interstitial telomeric sequences in nine neotropical primates (Platyrrhini): Possible implications in evolution and phylogeny. J. Zoöl. Syst. Evol. Res. 2016;54:226–236. doi: 10.1111/jzs.12131. DOI

Mazzoleni S., Schillaci O., Sineo L., Dumas F. Distribution of interstitial telomeric sequences in primates and the pygmy tree shrew (Scandentia) Cytogenet. Genome Res. 2017;151:141–150. doi: 10.1159/000467634. PubMed DOI

Mazzoleni S., Rovatsos M., Schillaci O., Dumas F. Evolutionary insight on localization of 18S, 28S rDNA genes on homologous chromosomes in Primates genomes. Comp. Cytogenet. 2018;12:27–40. doi: 10.3897/compcytogen.v12i1.19381. PubMed DOI PMC

Milioto V., Vlah S., Mazzoleni S., Rovatsos M., Dumas F. Chromosomal localization of 18S-28S rDNA and (TTAGGG)n sequences in two south african dormice of the genus Graphiurus (Rodentia: Gliridae) Cytogenet. Genome Res. 2019;158:145–151. doi: 10.1159/000500985. PubMed DOI

Rovatsos M., Altmanová M., Augstenová B., Mazzoleni S., Velenský P., Kratochvíl L. ZZ/ZW sex determination with multiple neo-sex chromosomes is common in madagascan chameleons of the genus Furcifer (Reptilia: Chamaeleonidae) Genes. 2019;10:1020. doi: 10.3390/genes10121020. PubMed DOI PMC

Mazzoleni S., Augstenová B., Clemente L., Auer M., Fritz U., Praschag P., Protiva T., Velenský P., Kratochvíl L., Rovatsos M. Sex is determined by XX/XY sex chromosomes in Australasian side-necked turtles (Testudines: Chelidae) Sci. Rep. 2020;10:1–11. doi: 10.1038/s41598-020-61116-w. PubMed DOI PMC

Meyne J., Ratliff R.L., Moyzis R.K. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc. Natl. Acad. Sci. USA. 1989;86:7049–7053. doi: 10.1073/pnas.86.18.7049. PubMed DOI PMC

Meyne J., Baker R.J., Hobart H.H., Hsu T.C., Ryder O.A., Ward O.G., Wiley J.E., Wurster-Hill D.H., Yates T.L., Moyzis R.K. Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma. 1990;99:3–10. doi: 10.1007/BF01737283. PubMed DOI

Ruiz-Herrera A., Nergadze S.G., Santagostino M., Giulotto E. Telomeric repeats far from the ends: Mechanisms of origin and role in evolution. Cytogenet. Genome Res. 2008;122:219–228. doi: 10.1159/000167807. PubMed DOI

Ficetola G.F., Scali S. Atti VIII Congresso Nazionale Societas Herpetologica Italica. Ianieri Edizioni; Pescara, Italy: 2010. Invasive amphibians and reptiles in Italy; pp. 335–340.

Redrobe S., MacDonald J. Sample collection and clinical pathology of reptiles. Vet. Clin. N. Am. Exot. Anim. Pract. 1999;2:709–730. doi: 10.1016/S1094-9194(17)30118-4. PubMed DOI

Naselli-Flores L., Marrone F. Different invasibility of permanent and temporary waterbodies in a semiarid Mediterranean Island. Inland Waters. 2019;9:41–421. doi: 10.1080/20442041.2019.1653110. DOI

Mazzoleni S., Augstenová B., Clemente L., Auer M., Fritz U., Praschag P., Protiva T., Velenský P., Kratochvíl L., Rovatsos M. Turtles of the genera Geoemyda and Pangshura (Testudines: Geoemydidae) lack differentiated sex chromosomes: The end of a 40-year error cascade for Pangshura. PeerJ. 2019;7:e6241. doi: 10.7717/peerj.6241. PubMed DOI PMC

Belaiba E., Marrone F., Vecchioni L., Bahri-Sfar L., Arculeo M. An exhaustive phylogeny of the combtooth blenny genus Salaria (Pisces, Blenniidae) shows introgressive hybridization and lack of reciprocal mtDNA monophyly between the marine species Salaria basilisca and Salaria pavo. Mol. Phylogenet. Evol. 2019;135:210–221. doi: 10.1016/j.ympev.2019.02.026. PubMed DOI

Kasai F., O’Brien P.C.M., Ferguson-Smith M.A. Reassessment of genome size in turtle and crocodile based on chromosome measurement by flow karyotyping: Close similarity to chicken. Biol Lett. 2012;8:631–635. doi: 10.1098/rsbl.2012.0141. PubMed DOI PMC

Olmo E. Trends in the evolution of reptilian chromosomes. Integr. Comp. Biol. 2008;48:486–493. doi: 10.1093/icb/icn049. PubMed DOI

Bista B., Valenzuela N. Turtle insights into the evolution of the reptilian karyotype and the genomic architecture of sex determination. Genes. 2020;11:416. doi: 10.3390/genes11040416. PubMed DOI PMC

Vamberger M., Ihlow F., Asztalos M., Dawson J.E., Jasinski S.E., Praschag P., Fritz U. So different, yet so alike: North American slider turtles (Trachemys scripta) Vertebr. Zool. 2020;70:87–96.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace