Bioinformatics and Machine Learning Approaches to Understand the Regulation of Mobile Genetic Elements
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
H2020-WF-01-2018: 867414
Horizon 2020
PubMed
34571773
PubMed Central
PMC8465862
DOI
10.3390/biology10090896
PII: biology10090896
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation, PIWI-interacting RNAs, bioinformatics methods, circular RNAs, machine learning, mobile genetic elements, small RNAs, transposable elements regulation,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Transposable elements (TEs, or mobile genetic elements, MGEs) are ubiquitous genetic elements that make up a substantial proportion of the genome of many species. The recent growing interest in understanding the evolution and function of TEs has revealed that TEs play a dual role in genome evolution, development, disease, and drug resistance. Cells regulate TE expression against uncontrolled activity that can lead to developmental defects and disease, using multiple strategies, such as DNA chemical modification, small RNA (sRNA) silencing, chromatin modification, as well as sequence-specific repressors. Advancements in bioinformatics and machine learning approaches are increasingly contributing to the analysis of the regulation mechanisms. A plethora of tools and machine learning approaches have been developed for prediction, annotation, and expression profiling of sRNAs, for methylation analysis of TEs, as well as for genome-wide methylation analysis through bisulfite sequencing data. In this review, we provide a guided overview of the bioinformatic and machine learning state of the art of fields closely associated with TE regulation and function.
Zobrazit více v PubMed
Pace J.K., Feschotte C. The evolutionary history of human DNA transposons: Evidence for intense activity in the primate lineage. Genome Res. 2007;17:422–432. doi: 10.1101/gr.5826307. PubMed DOI PMC
De Koning A.P.J., Gu W., Castoe T.A., Batzer M.A., Pollock D.D. Repetitive Elements May Comprise Over Two-Thirds of the Human Genome. PLoS Genet. 2011;7:e1002384. doi: 10.1371/journal.pgen.1002384. PubMed DOI PMC
Schnable P.S., Ware D., Fulton R.S., Stein J.C., Wei F., Pasternak S., Liang C., Zhang J., Fulton L., Graves T.A., et al. The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science. 2009;326:1112–1115. doi: 10.1126/science.1178534. PubMed DOI
Sotero-Caio C.G., Platt R.N., Suh A., Ray D.A. Evolution and Diversity of Transposable Elements in Vertebrate Genomes. Genome Biol. Evol. 2017;9:161–177. doi: 10.1093/gbe/evw264. PubMed DOI PMC
Jurka J., Bao W., Kojima K.K. Families of transposable elements, population structure and the origin of species. Biol. Direct. 2011;6:44. doi: 10.1186/1745-6150-6-44. PubMed DOI PMC
Gregory T.R. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol. Rev. Camb. Philos. Soc. 2001;76:65–101. doi: 10.1017/S1464793100005595. PubMed DOI
Bourque G., Burns K.H., Gehring M., Gorbunova V., Seluanov A., Hammell M., Imbeault M., Izsvák Z., Levin H.L., Macfarlan T.S., et al. Ten things you should know about transposable elements. Genome Biol. 2018;19:199. doi: 10.1186/s13059-018-1577-z. PubMed DOI PMC
Branco M.R., Chuong E.B. Crossroads between transposons and gene regulation. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20190330. doi: 10.1098/rstb.2019.0330. PubMed DOI PMC
Ali A., Han K., Liang P. Role of Transposable Elements in Gene Regulation in the Human Genome. Life. 2021;11:118. doi: 10.3390/life11020118. PubMed DOI PMC
Fambrini M., Usai G., Vangelisti A., Mascagni F., Pugliesi C. The plastic genome: The impact of transposable elements on gene functionality and genomic structural variations. Genesis. 2020;58:e23399. doi: 10.1002/dvg.23399. PubMed DOI
Enriquez-Gasca R., Gould P.A., Rowe H.M. Host Gene Regulation by Transposable Elements: The New, the Old and the Ugly. Viruses. 2020;12:1089. doi: 10.3390/v12101089. PubMed DOI PMC
Cao X., Zhang Y., Payer L.M., Lords H., Steranka J.P., Burns K.H., Xing J. Polymorphic mobile element insertions contribute to gene expression and alternative splicing in human tissues. Genome Biol. 2020;21:185. doi: 10.1186/s13059-020-02101-4. PubMed DOI PMC
Hernandes-Lopes J., Quintanilha D.M., de Jesus E.M., Lopes F.M., Parmigiani R.B., Karolski B., Dias H.M., Jacobs T.B., Camargo A.A., Kitajima J.P., et al. Evidence-Based Gene Expression Modulation Correlates with Transposable Element Knock-Down. bioRxiv. 2020 doi: 10.1101/2020.08.15.252312. DOI
Mérel V., Boulesteix M., Fablet M., Vieira C. Transposable elements in Drosophila. Mob. DNA. 2020;11:23. doi: 10.1186/s13100-020-00213-z. PubMed DOI PMC
Bravo J.I., Nozownik S., Danthi P.S., Benayoun B.A. Transposable elements, circular RNAs and mitochondrial transcription in age-related genomic regulation. Development. 2020;147:dev175786. doi: 10.1242/dev.175786. PubMed DOI PMC
Percharde M., Sultana T., Ramalho-Santos M. What Doesn’t Kill You Makes You Stronger: Transposons as Dual Players in Chromatin Regulation and Genomic Variation. BioEssays. 2020;42:e1900232. doi: 10.1002/bies.201900232. PubMed DOI
Jakšić A.M., Kofler R., Schlötterer C. Regulation of transposable elements: Interplay between TE-encoded regulatory sequences and host-specifictrans-acting factors inDrosophila melanogaster. Mol. Ecol. 2017;26:5149–5159. doi: 10.1111/mec.14259. PubMed DOI
Sigman M.J., Slotkin R.K. The First Rule of Plant Transposable Element Silencing: Location, Location, Location. Plant Cell. 2016;28:304–313. doi: 10.1105/tpc.15.00869. PubMed DOI PMC
Kabelitz T., Bäurle I. Get the jump—Do 3′UTRs protect transposable elements from silencing? Mob. Genet. Elem. 2015;5:51–54. doi: 10.1080/2159256X.2015.1052179. PubMed DOI PMC
Kabelitz T., Kappel C., Henneberger K., Benke E., Nöh C., Bäurle I. eQTL Mapping of Transposon Silencing Reveals a Position-Dependent Stable Escape from Epigenetic Silencing and Transposition of AtMu1 in the Arabidopsis Lineage. Plant Cell. 2014;26:3261–3271. doi: 10.1105/tpc.114.128512. PubMed DOI PMC
Kabelitz T., Brzezinka K., Friedrich T., Górka M., Graf A., Kappel C., Bäurle I. A JUMONJI Protein with E3 Ligase and Histone H3 Binding Activities Affects Transposon Silencing in Arabidopsis. Plant Physiol. 2016;171:344–358. doi: 10.1104/pp.15.01688. PubMed DOI PMC
Tristan-Ramos P., Morell S., Sanchez L., Toledo B., Garcia-Perez J.L., Heras S.R. sRNA/L1 retrotransposition: Using siRNAs and miRNAs to expand the applications of the cell culture-based LINE-1 retrotransposition assay. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20190346. doi: 10.1098/rstb.2019.0346. PubMed DOI PMC
Deniz Ö., Frost J.M., Branco M.R. Regulation of transposable elements by DNA modifications. Nat. Rev. Genet. 2019;20:417–431. doi: 10.1038/s41576-019-0117-3. PubMed DOI
Malone C.D., Hannon G.J. Small RNAs as Guardians of the Genome. Cell. 2009;136:656–668. doi: 10.1016/j.cell.2009.01.045. PubMed DOI PMC
Zhou W., Liang G., Molloy P.L., Jones P.A. DNA methylation enables transposable element-driven genome expansion. Proc. Natl. Acad. Sci. USA. 2020;117:19359–19366. doi: 10.1073/pnas.1921719117. PubMed DOI PMC
Warring S.D., Blow F., Avecilla G., Orosco J.C., Sullivan S.A., Carlton J.M. Small RNAs Are Implicated in Regulation of Gene and Transposable Element Expression in the Protist Trichomonas vaginalis. mSphere. 2021;6:e01061-20. doi: 10.1128/mSphere.01061-20. PubMed DOI PMC
Grundy E.E., Diab N., Chiappinelli K.B. Transposable element regulation and expression in cancer. FEBS J. 2021 doi: 10.1111/febs.15722. PubMed DOI
Liu S., de Jonge J., Trejo-Arellano M.S., Santos-González J., Köhler C., Hennig L. Role of H1 and DNA methylation in selective regulation of transposable elements during heat stress. New Phytol. 2021;229:2238–2250. doi: 10.1111/nph.17018. PubMed DOI PMC
Erdmann R.M., Picard C.L. RNA-directed DNA Methylation. PLoS Genet. 2020;16:e1009034. doi: 10.1371/journal.pgen.1009034. PubMed DOI PMC
Elmer J.L., Hay A.D., Kessler N.J., Bertozzi T.M., Ainscough E., Ferguson-Smith A.C. Genomic properties of variably methylated retrotransposons in mouse. bioRxiv. 2020 doi: 10.1101/2020.10.21.349217. PubMed DOI PMC
Chu S., Zhang X., Yu K., Lv L., Sun C., Liu X., Zhang J., Jiao Y., Zhang D. Genome-Wide Analysis Reveals Dynamic Epigenomic Differences in Soybean Response to Low-Phosphorus Stress. Int. J. Mol. Sci. 2020;21:6817. doi: 10.3390/ijms21186817. PubMed DOI PMC
Reinhardt J.A., Baker R.H., Zimin A.V., Ladias C., Paczolt K.A., Werren J., Hayashi C., Wilkinson G.S. Transposable Element Control Disrupted by Meiotic Drive in a Stalk-Eyed Fly Genome. bioRxiv. 2020 doi: 10.1101/2020.09.23.310227. DOI
Ramat A., Simonelig M. Functions of PIWI Proteins in Gene Regulation: New Arrows Added to the piRNA Quiver. Trends Genet. 2021;37:188–200. doi: 10.1016/j.tig.2020.08.011. PubMed DOI
Hayashi Y., Takehira K., Nozawa K., Suzuki T., Masuta Y., Kato A., Ito H. ONSEN shows different transposition activities in RdDM pathway mutants. Genes Genet. Syst. 2020;95:183–190. doi: 10.1266/ggs.20-00019. PubMed DOI
Mbichi R.W., Wang Q.-F., Wan T. RNA directed DNA methylation and seed plant genome evolution. Plant Cell Rep. 2020;39:983–996. doi: 10.1007/s00299-020-02558-4. PubMed DOI PMC
O’Neill K., Brocks D., Hammell M.G. Mobile genomics: Tools and techniques for tackling transposons. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20190345. doi: 10.1098/rstb.2019.0345. PubMed DOI PMC
Lander E.S., Linton L.M., Birren B., Nusbaum C., Zody M.C., Baldwin J., Devon K., Dewar K., Doyle M., Fitzhugh W., et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. doi: 10.1038/35057062. PubMed DOI
Waterston R.H., Pachter L. Initial Sequencing and Comparative Analysis of the Mouse Genome. Nature. 2002;420:520–562. doi: 10.1038/nature01262. PubMed DOI
Boissinot S., Chevret P., Furano A.V. L1 (LINE-1) Retrotransposon Evolution and Amplification in Recent Human History. Mol. Biol. Evol. 2000;17:915–928. doi: 10.1093/oxfordjournals.molbev.a026372. PubMed DOI
Sheen F.-M., Sherry S.T., Risch G.M., Robichaux M., Nasidze I., Stoneking M., Batzer M.A., Swergold G.D. Reading between the LINEs: Human Genomic Variation Induced by LINE-1 Retrotransposition. Genome Res. 2000;10:1496–1508. doi: 10.1101/gr.149400. PubMed DOI PMC
Brouha B., Schustak J., Badge R., Lutz S., Farley A.H., Moran J.V., Kazazian H.H. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl. Acad. Sci. USA. 2003;100:5280–5285. doi: 10.1073/pnas.0831042100. PubMed DOI PMC
Lu X., Sachs F., Ramsay L., Jacques P., Göke J., Bourque G., Ng H.-H. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol. 2014;21:423–425. doi: 10.1038/nsmb.2799. PubMed DOI
Grow E.J., Flynn R., Chavez S., Bayless N.L., Wossidlo M., Wesche D.J., Martin L., Ware C.B., Blish C., Chang H.Y., et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature. 2015;522:221–225. doi: 10.1038/nature14308. PubMed DOI PMC
Jachowicz J., Bing X., Pontabry J., Bošković A., Rando O.J., Torres-Padilla M.-E. LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat. Genet. 2017;49:1502–1510. doi: 10.1038/ng.3945. PubMed DOI
Rowe H., Kapopoulou A., Corsinotti A., Fasching L., Macfarlan T., Tarabay Y., Viville S., Jakobsson J., Pfaff S.L., Trono D. TRIM28 repression of retrotransposon-based enhancers is necessary to preserve transcriptional dynamics in embryonic stem cells. Genome Res. 2012;23:452–461. doi: 10.1101/gr.147678.112. PubMed DOI PMC
Percharde M., Lin C.-J., Yin Y., Guan J., Peixoto G.A., Bulut-Karslioglu A., Biechele S., Huang B., Shen X., Ramalho-Santos M. A LINE1-Nucleolin Partnership Regulates Early Development and ESC Identity. Cell. 2018;174:391–405.e19. doi: 10.1016/j.cell.2018.05.043. PubMed DOI PMC
Chuong E., Elde N.C., Feschotte C. Regulatory activities of transposable elements: From conflicts to benefits. Nat. Rev. Genet. 2017;18:71–86. doi: 10.1038/nrg.2016.139. PubMed DOI PMC
Chuong E., Elde N.C., Feschotte C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science. 2016;351:1083–1087. doi: 10.1126/science.aad5497. PubMed DOI PMC
Imbeault M., Helleboid P.-Y., Trono D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature. 2017;543:550–554. doi: 10.1038/nature21683. PubMed DOI
Sundaram V., Cheng Y., Ma Z., Li D., Xing X., Edge P., Snyder M.P., Wang T. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 2014;24:1963–1976. doi: 10.1101/gr.168872.113. PubMed DOI PMC
Pontis J., Planet E., Offner S., Turelli P., Duc J., Coudray A., Theunissen T., Jaenisch R., Trono D. Hominoid-Specific Transposable Elements and KZFPs Facilitate Human Embryonic Genome Activation and Control Transcription in Naive Human ESCs. Cell Stem Cell. 2019;24:724–735.e5. doi: 10.1016/j.stem.2019.03.012. PubMed DOI PMC
Venuto D., Bourque G. Identifying co-opted transposable elements using comparative epigenomics. Dev. Growth Differ. 2018;60:53–62. doi: 10.1111/dgd.12423. PubMed DOI
Raviram R., Rocha P.P., Luo V.M., Swanzey E., Miraldi E.R., Chuong E.B., Feschotte C., Bonneau R., Skok J.A. Analysis of 3D genomic interactions identifies candidate host genes that transposable elements potentially regulate. Genome Biol. 2018;19:216. doi: 10.1186/s13059-018-1598-7. PubMed DOI PMC
Biémont C., Tsitrone A., Vieira C., Hoogland C. Transposable Element Distribution in Drosophila. Genetics. 1997;147:1997–1999. doi: 10.1093/genetics/147.4.1997. PubMed DOI PMC
Charlesworth B., Langley C.H., Sniegowski P.D. Transposable Element Distributions in Drosophila. Genetics. 1997;147:1993–1995. doi: 10.1093/genetics/147.4.1993. PubMed DOI PMC
Rizzon C., Martin E., Marais G., Duret L., Ségalat L., Biémont C. Patterns of Selection Against Transposons Inferred From the Distribution of Tc1, Tc3 and Tc5 Insertions in the mut-7 Line of the Nematode Caenorhabditis elegans. Genetics. 2003;165:1127–1135. doi: 10.1093/genetics/165.3.1127. PubMed DOI PMC
Hancks D.C., Kazazian H.H. Roles for retrotransposon insertions in human disease. Mob. DNA. 2016;7:9. doi: 10.1186/s13100-016-0065-9. PubMed DOI PMC
Slotkin R.K., Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 2007;8:272–285. doi: 10.1038/nrg2072. PubMed DOI
Brennecke J., Aravin A.A., Stark A., Dus M., Kellis M., Sachidanandam R., Hannon G.J. Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila. Cell. 2007;128:1089–1103. doi: 10.1016/j.cell.2007.01.043. PubMed DOI
Jacobs F., Greenberg D.A., Nguyen N., Haeussler M., Ewing A., Katzman S., Paten B., Salama S., Haussler D. An evolutionary arms race between KRAB zinc-finger genes 91/93 and SVA/L1 retrotransposons. Nature. 2014;516:242–245. doi: 10.1038/nature13760. PubMed DOI PMC
Zemach A., Kim M.Y., Hsieh P.-H., Coleman-Derr D., Williams L.E., Thao K., Harmer S., Zilberman D. The Nucleosome Remodeler DDM1 Allows DNA Methyltransferases to Access H1-Containing Heterochromatin. Cell. 2013;153:193–205. doi: 10.1016/j.cell.2013.02.033. PubMed DOI PMC
Dunican D.S., Cruickshanks H.A., Suzuki M., Semple C.A., Davey T., Arceci R.J., Greally J., Adams I.R., Meehan R.R. Lsh regulates LTR retrotransposon repression independently of Dnmt3b function. Genome Biol. 2013;14:R146. doi: 10.1186/gb-2013-14-12-r146. PubMed DOI PMC
Larrañaga P., Calvo B., Santana R., Bielza C., Galdiano J., Inza I., Lozano J.A., Armañanzas R., Santafé G., Pérez A., et al. Machine learning in bioinformatics. Briefings Bioinform. 2006;7:86–112. doi: 10.1093/bib/bbk007. PubMed DOI
Mjolsness E. Machine Learning for Science: State of the Art and Future Prospects. Science. 2001;293:2051–2055. doi: 10.1126/science.293.5537.2051. PubMed DOI
Libbrecht M., Noble W.S. Machine learning in genetics and genomics. Nat. Rev. Genet. 2015;16:321–332. doi: 10.1038/nrg3920. PubMed DOI PMC
Deo R.C. Machine Learning in Medicine. Circulation. 2015;132:1920–1930. doi: 10.1161/CIRCULATIONAHA.115.001593. PubMed DOI PMC
Ma C., Zhang H.H., Wang X. Machine learning for Big Data analytics in plants. Trends Plant Sci. 2014;19:798–808. doi: 10.1016/j.tplants.2014.08.004. PubMed DOI
Kriegeskorte N., Golan T. Neural network models and deep learning. Curr. Biol. 2019;29:R231–R236. doi: 10.1016/j.cub.2019.02.034. PubMed DOI
Yamashita R., Nishio M., Do R.K.G., Togashi K. Convolutional neural networks: An overview and application in radiology. Insights Imaging. 2018;9:611–629. doi: 10.1007/s13244-018-0639-9. PubMed DOI PMC
Breiman L. Random forests. Mach. Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324. DOI
Huang S., Cai N., Pacheco P.P., Narandes S., Wang Y., Xu W. Applications of Support Vector Machine (SVM) Learning in Cancer Genomics. Cancer Genom. Proteom. 2018;15:41–51. doi: 10.21873/cgp.20063. PubMed DOI PMC
Law J.A., Jacobsen S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 2010;11:204–220. doi: 10.1038/nrg2719. PubMed DOI PMC
Frommer M., McDonald L.E., Millar D.S., Collis C.M., Watt F., Grigg G.W., Molloy P.L., Paul C.L. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA. 1992;89:1827–1831. doi: 10.1073/pnas.89.5.1827. PubMed DOI PMC
Lister R., Pelizzola M., Dowen R.H., Hawkins R.D., Hon G., Tonti-Filippini J., Nery J.R., Lee L., Ye Z., Ngo Q.-M., et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462:315–322. doi: 10.1038/nature08514. PubMed DOI PMC
Cokus S.J., Feng S., Zhang X., Chen Z., Merriman B., Haudenschild C.D., Pradhan S., Nelson S.F., Pellegrini M., Jacobsen S.E. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature. 2008;452:215–219. doi: 10.1038/nature06745. PubMed DOI PMC
Xi Y., Li W. BSMAP: Whole genome bisulfite sequence MAPping program. BMC Bioinform. 2009;10:232. doi: 10.1186/1471-2105-10-232. PubMed DOI PMC
Krueger F., Andrews S.R. Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27:1571–1572. doi: 10.1093/bioinformatics/btr167. PubMed DOI PMC
Sun D., Xi Y., Rodriguez B., Park H.J., Tong P., Meong M., A Goodell M., Li W. MOABS: Model based analysis of bisulfite sequencing data. Genome Biol. 2014;15:R38. doi: 10.1186/gb-2014-15-2-r38. PubMed DOI PMC
Huang K.Y.Y., Huang Y.-J., Chen P.-Y. BS-Seeker3: Ultrafast pipeline for bisulfite sequencing. BMC Bioinform. 2018;19:111. doi: 10.1186/s12859-018-2120-7. PubMed DOI PMC
Stuart T., Eichten S.R., Cahn J., Karpievitch Y.V., Borevitz J., Lister R. Population scale mapping of transposable element diversity reveals links to gene regulation and epigenomic variation. eLife. 2016;5:e20777. doi: 10.7554/eLife.20777. PubMed DOI PMC
Daron J., Slotkin R.K. EpiTEome: Simultaneous detection of transposable element insertion sites and their DNA methylation levels. Genome Biol. 2017;18:91. doi: 10.1186/s13059-017-1232-0. PubMed DOI PMC
Chen P.-Y., Cokus S.J., Pellegrini M. BS Seeker: Precise mapping for bisulfite sequencing. BMC Bioinform. 2010;11:203. doi: 10.1186/1471-2105-11-203. PubMed DOI PMC
Langmead B., Trapnell C., Pop M., Salzberg S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. doi: 10.1186/gb-2009-10-3-r25. PubMed DOI PMC
Lister R., Omalley R., Tonti-Filippini J., Gregory B.D., Berry C.C., Millar A.H., Ecker J.R. Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis. Cell. 2008;133:523–536. doi: 10.1016/j.cell.2008.03.029. PubMed DOI PMC
Smith A.D., Xuan Z., Zhang M.Q. Using quality scores and longer reads improves accuracy of Solexa read mapping. BMC Bioinform. 2008;9:128. doi: 10.1186/1471-2105-9-128. PubMed DOI PMC
Li H., Ruan J., Durbin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 2008;18:1851–1858. doi: 10.1101/gr.078212.108. PubMed DOI PMC
Guo W., Fiziev P., Yan W., Cokus S., Sun X., Zhang M.Q., Chen P.-Y., Pellegrini M. BS-Seeker2: A versatile aligning pipeline for bisulfite sequencing data. BMC Genom. 2013;14:774. doi: 10.1186/1471-2164-14-774. PubMed DOI PMC
Hansen K.D., Langmead B., Irizarry R.A. BSmooth: From whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol. 2012;13:R83. doi: 10.1186/gb-2012-13-10-r83. PubMed DOI PMC
Meissner A., Mikkelsen T.S., Gu H., Wernig M., Hanna J.H., Sivachenko A., Zhang X., Bernstein B.E., Nusbaum C., Jaffe D.B., et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454:766–770. doi: 10.1038/nature07107. PubMed DOI PMC
Booth M., Branco M., Ficz G., Oxley D., Krueger F., Reik W., Balasubramanian S. Quantitative Sequencing of 5-Methylcytosine and 5-Hydroxymethylcytosine at Single-Base Resolution. Science. 2012;336:934–937. doi: 10.1126/science.1220671. PubMed DOI
Quadrana L., Silveira A.B., Mayhew G.F., Leblanc C., Martienssen R.A., Jeddeloh J.A., Colot V. The Arabidopsis thaliana mobilome and its impact at the species level. eLife. 2016;5:e15716. doi: 10.7554/eLife.15716. PubMed DOI PMC
Schmitz R., Schultz M.D., Urich M.A., Nery J.R., Pelizzola M., Libiger O., Alix A., McCosh R., Chen H., Schork N.J., et al. Patterns of population epigenomic diversity. Nature. 2013;495:193–198. doi: 10.1038/nature11968. PubMed DOI PMC
Graña O., López-Fernández H., Fdez-Riverola F., Pisano D.G., Glez-Peña D. Bicycle: A bioinformatics pipeline to analyze bisulfite sequencing data. Bioinformatics. 2018;34:1414–1415. doi: 10.1093/bioinformatics/btx778. PubMed DOI
Shukla R., Upton K.R., Muñoz-Lopez M., Gerhardt D.J., Fisher M.E., Nguyen T., Brennan P.M., Baillie J.K., Collino A., Ghisletti S., et al. Endogenous Retrotransposition Activates Oncogenic Pathways in Hepatocellular Carcinoma. Cell. 2013;153:101–111. doi: 10.1016/j.cell.2013.02.032. PubMed DOI PMC
Noshay J.M., Anderson S.N., Zhou P., Ji L., Ricci W., Lu Z., Stitzer M.C., Crisp P., Hirsch C.N., Zhang X., et al. Monitoring the interplay between transposable element families and DNA methylation in maize. PLoS Genet. 2019;15:e1008291. doi: 10.1371/journal.pgen.1008291. PubMed DOI PMC
Schorn A.J., Gutbrod M.J., LeBlanc C., Martienssen R. LTR-Retrotransposon Control by tRNA-Derived Small RNAs. Cell. 2017;170:61–71.e11. doi: 10.1016/j.cell.2017.06.013. PubMed DOI PMC
Gebert D., Hewel C., Rosenkranz D. unitas: The universal tool for annotation of small RNAs. BMC Genom. 2017;18:644. doi: 10.1186/s12864-017-4031-9. PubMed DOI PMC
O’Neill K., Liao W.-W., Patel A., Hammell M.G. TEsmall Identifies Small RNAs Associated with Targeted Inhibitor Resistance in Melanoma. Front. Genet. 2018;9:461. doi: 10.3389/fgene.2018.00461. PubMed DOI PMC
Veerappa A.M., Megha M.N., Vishweswaraiah S., Lingaiah K., Suresh R.V., Nachappa S.A., Prashali N., Yadav S.N., Srikanta M.A., Manjegowda D.S., et al. Copy Number Variations Burden on miRNA Genes Reveals Layers of Complexities Involved in the Regulation of Pathways and Phenotypic Expression. PLoS ONE. 2014;9:e90391. doi: 10.1371/journal.pone.0090391. PubMed DOI PMC
Marcinkowska M., Szymanski M., Krzyzosiak W.J., Kozlowski P. Copy number variation of microRNA genes in the human genome. BMC Genom. 2011;12:183. doi: 10.1186/1471-2164-12-183. PubMed DOI PMC
Hammond S.M. An overview of microRNAs. Adv. Drug Deliv. Rev. 2015;87:3–14. doi: 10.1016/j.addr.2015.05.001. PubMed DOI PMC
Pedersen I.M., Zisoulis D.G. Transposable elements and miRNA: Regulation of genomic stability and plasticity. Mob. Genet. Elem. 2016;6:e1175537. doi: 10.1080/2159256X.2016.1175537. PubMed DOI PMC
Shalgi R., Pilpel Y., Oren M. Repression of transposable-elements—A microRNA anti-cancer defense mechanism? Trends Genet. 2010;26:253–259. doi: 10.1016/j.tig.2010.03.006. PubMed DOI
Petri R., Brattås P.L., Sharma Y., Jönsson M.E., Pircs K., Bengzon J., Jakobsson J. LINE-2 transposable elements are a source of functional human microRNAs and target sites. PLoS Genet. 2019;15:e1008036. doi: 10.1371/journal.pgen.1008036. PubMed DOI PMC
Li Y., Li C., Xia J., Jin Y. Domestication of Transposable Elements into MicroRNA Genes in Plants. PLoS ONE. 2011;6:e19212. doi: 10.1371/journal.pone.0019212. PubMed DOI PMC
Creasey K.M., Zhai J., Borges F., Van Ex F., Regulski M., Meyers B., Martienssen R.A. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature. 2014;508:411–415. doi: 10.1038/nature13069. PubMed DOI PMC
Moxon S., Schwach F., Dalmay T., MacLean D., Studholme D.J., Moulton V. A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics. 2008;24:2252–2253. doi: 10.1093/bioinformatics/btn428. PubMed DOI
Stocks M.B., Moxon S., Mapleson D., Woolfenden H.C., Mohorianu I., Folkes L., Schwach F., Dalmay T., Moulton V. The UEA sRNA workbench: A suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics. 2012;28:2059–2061. doi: 10.1093/bioinformatics/bts311. PubMed DOI PMC
Hackenberg M., Sturm M., Langenberger D., Falcon-Perez J.M., Aransay A.M. miRanalyzer: A microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res. 2009;37:W68–W76. doi: 10.1093/nar/gkp347. PubMed DOI PMC
Pantano L., Estivill X., Martí E. SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Res. 2010;38:e34. doi: 10.1093/nar/gkp1127. PubMed DOI PMC
Morin R.D., O’Connor M., Griffith M., Kuchenbauer F., Delaney A., Prabhu A.-L., Zhao Y., McDonald H., Zeng T., Hirst M., et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 2008;18:610–621. doi: 10.1101/gr.7179508. PubMed DOI PMC
Martí E., Pantano L., Bañez-Coronel M., Llorens F., Miñones-Moyano E., Porta S., Sumoy L., Ferrer I., Estivill X. A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res. 2010;38:7219–7235. doi: 10.1093/nar/gkq575. PubMed DOI PMC
Iida K., Jin H., Zhu J.-K. Bioinformatics analysis suggests base modifications of tRNAs and miRNAs in Arabidopsis thaliana. BMC Genom. 2009;10:155. doi: 10.1186/1471-2164-10-155. PubMed DOI PMC
Ebhardt H.A., Tsang H.H., Dai D.C., Liu Y., Bostan B., Fahlman R.P. Meta-analysis of small RNA-sequencing errors reveals ubiquitous post-transcriptional RNA modifications. Nucleic Acids Res. 2009;37:2461–2470. doi: 10.1093/nar/gkp093. PubMed DOI PMC
Kawahara Y., Megraw M., Kreider E., Iizasa H., Valente L., Hatzigeorgiou A.G., Nishikura K. Frequency and fate of microRNA editing in human brain. Nucleic Acids Res. 2008;36:5270–5280. doi: 10.1093/nar/gkn479. PubMed DOI PMC
Fasold M., Langenberger D., Binder H., Stadler P.F., Hoffmann S. DARIO: A ncRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res. 2011;39:W112–W117. doi: 10.1093/nar/gkr357. PubMed DOI PMC
Friedlander M., Mackowiak S., Li N., Chen W., Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40:37–52. doi: 10.1093/nar/gkr688. PubMed DOI PMC
Friedlander M., Chen W., Adamidi C., Maaskola J., Einspanier R., Knespel S., Rajewsky N. Discovering microRNAs from deep sequencing data using miRDeep. Nat. Biotechnol. 2008;26:407–415. doi: 10.1038/nbt1394. PubMed DOI
Zhu E., Zhao F., Xu G., Hou H., Zhou L., Li X., Sun Z., Wu J. mirTools: microRNA profiling and discovery based on high-throughput sequencing. Nucleic Acids Res. 2010;38:W392–W397. doi: 10.1093/nar/gkq393. PubMed DOI PMC
Wu J., Liu Q., Wang X., Zheng J., Wang T., You M., Sun Z.S., Shi Q. mirTools 2.0 for non-coding RNA discovery, profiling, and functional annotation based on high-throughput sequencing. RNA Biol. 2013;10:1087–1092. doi: 10.4161/rna.25193. PubMed DOI PMC
Axtell M.J. ShortStack: Comprehensive annotation and quantification of small RNA genes. RNA. 2013;19:740–751. doi: 10.1261/rna.035279.112. PubMed DOI PMC
Rueda A., Barturen G., Lebrón R., Gómez-Martín C., Alganza Á., Oliver J.L., Hackenberg M. sRNAtoolbox: An integrated collection of small RNA research tools. Nucleic Acids Res. 2015;43:W467–W473. doi: 10.1093/nar/gkv555. PubMed DOI PMC
Barturen G., Rueda A., Hamberg M., Alganza A., Lebron R., Kotsyfakis M., Shi B.-J., Koppers-Lalic D., Hackenberg M. sRNAbench: Profiling of small RNAs and its sequence variants in single or multi-species high-throughput experiments. Methods Next Gener. Seq. 2014;1:21–31. doi: 10.2478/mngs-2014-0001. DOI
Aparicio-Puerta E., Lebrón R., Rueda A., Gómez-Martín C., Giannoukakos S., Jáspez D., Medina J.M., Zubković A., Jurak I., Fromm B., et al. sRNAbench and sRNAtoolbox 2019: Intuitive fast small RNA profiling and differential expression. Nucleic Acids Res. 2019;47:W530–W535. doi: 10.1093/nar/gkz415. PubMed DOI PMC
Vitsios D., Enright A. Chimira: Analysis of small RNA sequencing data and microRNA modifications. Bioinformatics. 2015;31:3365–3367. doi: 10.1093/bioinformatics/btv380. PubMed DOI PMC
Capece V., Vizcaino J.C.G., Vidal R., Rahman R.-U., Centeno T.P., Shomroni O., Suberviola I., Fischer A., Bonn S. Oasis: Online analysis of small RNA deep sequencing data. Bioinformatics. 2015;31:2205–2207. doi: 10.1093/bioinformatics/btv113. PubMed DOI PMC
Tam O., Aravin A.A., Stein P., Girard A., Murchison E.P., Cheloufi S., Hodges E., Anger M., Sachidanandam R., Schultz R.M., et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature. 2008;453:534–538. doi: 10.1038/nature06904. PubMed DOI PMC
Hakim S.T., Alsayari M., McLean D.C., Saleem S., Addanki K.C., Aggarwal M., Mahalingam K., Bagasra O. A large number of the human microRNAs target lentiviruses, retroviruses, and endogenous retroviruses. Biochem. Biophys. Res. Commun. 2008;369:357–362. doi: 10.1016/j.bbrc.2008.02.025. PubMed DOI
Zlotorynski E. microRNAs suppress transposons. Nat. Rev. Mol. Cell Biol. 2014;15:298–299. doi: 10.1038/nrm3788. PubMed DOI
Rahman R.-U., Gautam A., Bethune J., Sattar A., Fiosins M., Magruder D.S., Capece V., Shomroni O., Bonn S. Oasis 2: Improved online analysis of small RNA-seq data. BMC Bioinform. 2018;19:54. doi: 10.1186/s12859-018-2047-z. PubMed DOI PMC
Pogorelcnik R., Vaury C., Pouchin P., Jensen S., Brasset E. sRNAPipe: A Galaxy-based pipeline for bioinformatic in-depth exploration of small RNAseq data. Mob. DNA. 2018;9:25. doi: 10.1186/s13100-018-0130-7. PubMed DOI PMC
Fallmann J., Videm P., Bagnacani A., Batut B., Doyle M.A., Klingstrom T., Eggenhofer F., Stadler P.F., Backofen R., Grüning B. The RNA workbench 2.0: Next generation RNA data analysis. Nucleic Acids Res. 2019;47:W511–W515. doi: 10.1093/nar/gkz353. PubMed DOI PMC
Liu X., Bienkowska J.R., Zhong W. GeneTEFlow: A Nextflow-based pipeline for analysing gene and transposable elements expression from RNA-Seq data. PLoS ONE. 2020;15:e0232994. doi: 10.1371/journal.pone.0232994. PubMed DOI PMC
Di Tommaso P., Chatzou M., Floden E., Barja P.P., Palumbo E., Notredame C. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 2017;35:316–319. doi: 10.1038/nbt.3820. PubMed DOI
Merkel D. Docker: Lightweight Linux Containers for Consistent Development and Deployment. Linux J. 2014;2014:2.
Handzlik J.E., Tastsoglou S., Vlachos I.S., Hatzigeorgiou A.G. Manatee: Detection and quantification of small non-coding RNAs from next-generation sequencing data. Sci. Rep. 2020;10:705. doi: 10.1038/s41598-020-57495-9. PubMed DOI PMC
Di Bella S., La Ferlita A., Carapezza G., Alaimo S., Isacchi A., Ferro A., Pulvirenti A., Bosotti R. A benchmarking of pipelines for detecting ncRNAs from RNA-Seq data. Brief. Bioinform. 2020;21:1987–1998. doi: 10.1093/bib/bbz110. PubMed DOI
Lau N.C., Seto A.G., Kim J., Kuramochi-Miyagawa S., Nakano T., Bartel D.P., Kingston R.E. Characterization of the piRNA Complex from Rat Testes. Science. 2006;313:363–367. doi: 10.1126/science.1130164. PubMed DOI
Ozata D.M., Gainetdinov I., Zoch A., O’Carroll D., Zamore P.D. PIWI-interacting RNAs: Small RNAs with big functions. Nat. Rev. Genet. 2019;20:89–108. doi: 10.1038/s41576-018-0073-3. PubMed DOI
Aravin A.A., Naumova N.M., Tulin A.V., Vagin V.V., Rozovsky Y.M., Gvozdev V.A. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol. 2001;11:1017–1027. doi: 10.1016/S0960-9822(01)00299-8. PubMed DOI
Surani M.A., Hajkova P. Epigenetic Reprogramming of Mouse Germ Cells toward Totipotency. Cold Spring Harb. Symp. Quant. Biol. 2010;75:211–218. doi: 10.1101/sqb.2010.75.010. PubMed DOI
Ernst C., Odom D.T., Kutter C. The emergence of piRNAs against transposon invasion to preserve mammalian genome integrity. Nat. Commun. 2017;8:1411. doi: 10.1038/s41467-017-01049-7. PubMed DOI PMC
Yu Y., Xiao J., Hann S.S. The emerging roles of PIWI-interacting RNA in human cancers. Cancer Manag. Res. 2019;11:5895–5909. doi: 10.2147/CMAR.S209300. PubMed DOI PMC
Robine N., Lau N.C., Balla S., Jin Z., Okamura K., Kuramochi-Miyagawa S., Blower M.D., Lai E.C. A Broadly Conserved Pathway Generates 3′UTR-Directed Primary piRNAs. Curr. Biol. 2009;19:2066–2076. doi: 10.1016/j.cub.2009.11.064. PubMed DOI PMC
Thomson T., Lin H. The Biogenesis and Function of PIWI Proteins and piRNAs: Progress and Prospect. Annu. Rev. Cell Dev. Biol. 2009;25:355–376. doi: 10.1146/annurev.cellbio.24.110707.175327. PubMed DOI PMC
Houwing S., Kamminga L., Berezikov E., Cronembold D., Girard A., Elst H.V.D., Filippov D.V., Blaser H., Raz E., Moens C., et al. A Role for Piwi and piRNAs in Germ Cell Maintenance and Transposon Silencing in Zebrafish. Cell. 2007;129:69–82. doi: 10.1016/j.cell.2007.03.026. PubMed DOI
Das P.P., Bagijn M.P., Goldstein L.D., Woolford J.R., Lehrbach N., Sapetschnig A., Buhecha H.R., Gilchrist M.J., Howe K., Stark R., et al. Piwi and piRNAs Act Upstream of an Endogenous siRNA Pathway to Suppress Tc3 Transposon Mobility in the Caenorhabditis elegans Germline. Mol. Cell. 2008;31:79–90. doi: 10.1016/j.molcel.2008.06.003. PubMed DOI PMC
Perera B., Tsai Z.T.-Y., Colwell M., Jones T.R., Goodrich J.M., Wang K., Sartor M.A., Faulk C., Dolinoy D.C. Somatic expression of piRNA and associated machinery in the mouse identifies short, tissue-specific piRNA. Epigenetics. 2019;14:504–521. doi: 10.1080/15592294.2019.1600389. PubMed DOI PMC
Hirakata S., Siomi M.C. piRNA biogenesis in the germline: From transcription of piRNA genomic sources to piRNA maturation. Biochim. Biophys. Acta BBA—Gene Regul. Mech. 2016;1859:82–92. doi: 10.1016/j.bbagrm.2015.09.002. PubMed DOI
Zhang Y., Wang X., Kang L. A k-mer scheme to predict piRNAs and characterize locust piRNAs. Bioinformatics. 2011;27:771–776. doi: 10.1093/bioinformatics/btr016. PubMed DOI PMC
Liu X., Ding J., Gong F. piRNA identification based on motif discovery. Mol. BioSyst. 2014;10:3075–3080. doi: 10.1039/C4MB00447G. PubMed DOI
Rigoutsos I., Floratos A. Combinatorial pattern discovery in biological sequences: The TEIRESIAS algorithm. Bioinformatics. 1998;14:55–67. doi: 10.1093/bioinformatics/14.1.55. PubMed DOI
Axtell M.J. Butter: High-Precision Genomic Alignment of Small RNA-Seq Data. bioRxiv. 2014:7427. doi: 10.1101/007427. DOI
Li H., Handsaker R., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Wang K., Liang C., Liu J., Xiao H., Huang S., Xu J., Li F. Prediction of piRNAs using transposon interaction and a support vector machine. BMC Bioinform. 2014;15:419. doi: 10.1186/s12859-014-0419-6. PubMed DOI PMC
Tafer H., Hofacker I.L. RNAplex: A fast tool for RNA–RNA interaction search. Bioinformatics. 2008;24:2657–2663. doi: 10.1093/bioinformatics/btn193. PubMed DOI
Luo L., Li D., Zhang W., Tu S., Zhu X., Tian G. Accurate Prediction of Transposon-Derived piRNAs by Integrating Various Sequential and Physicochemical Features. PLoS ONE. 2016;11:e0153268. doi: 10.1371/journal.pone.0153268. PubMed DOI PMC
Li D., Luo L., Zhang W., Liu F., Luo F. A genetic algorithm-based weighted ensemble method for predicting transposon-derived piRNAs. BMC Bioinform. 2016;17:329. doi: 10.1186/s12859-016-1206-3. PubMed DOI PMC
Han B., Wang W., Zamore P.D., Weng Z. piPipes: A set of pipelines for piRNA and transposon analysis via small RNA-seq, RNA-seq, degradome- and CAGE-seq, ChIP-seq and genomic DNA sequencing. Bioinformatics. 2014;31:593–595. doi: 10.1093/bioinformatics/btu647. PubMed DOI PMC
Liu B., Yang F., Chou K.-C. 2L-piRNA: A Two-Layer Ensemble Classifier for Identifying Piwi-Interacting RNAs and Their Function. Mol. Ther. Nucleic Acids. 2017;7:267–277. doi: 10.1016/j.omtn.2017.04.008. PubMed DOI PMC
Zhou X., Li Z., Dai Z., Zou X. Predicting methylation status of human DNA sequences by pseudo-trinucleotide composition. Talanta. 2011;85:1143–1147. doi: 10.1016/j.talanta.2011.05.043. PubMed DOI
Brayet J., Zehraoui F., Jeanson-Leh L., Israeli D., Tahi F. Towards a piRNA prediction using multiple kernel fusion and support vector machine. Bioinformatics. 2014;30:i364–i370. doi: 10.1093/bioinformatics/btu441. PubMed DOI PMC
Menor M.S., Baek K., Poisson G. Prediction of Mature MicroRNA and Piwi-Interacting RNA without a Genome Reference or Precursors. Int. J. Mol. Sci. 2015;16:1466–1481. doi: 10.3390/ijms16011466. PubMed DOI PMC
Menor M., Baek K., Poisson G. Multiclass relevance units machine: Benchmark evaluation and application to small ncRNA discovery. BMC Genom. 2013;14((Suppl. 2)):S6. doi: 10.1186/1471-2164-14-S2-S6. PubMed DOI PMC
Pian C., Chen Y.-Y., Zhang J., Chen Z., Zhang G.-L., Li Q., Yang T., Zhang L.-Y. V-ELMpiRNAPred: Identification of human piRNAs by the voting-based extreme learning machine (V-ELM) with a new hybrid feature. J. Bioinform. Comput. Biol. 2017;15:1650046. doi: 10.1142/S0219720016500463. PubMed DOI
Boucheham A., Sommard V., Zehraoui F., Boualem A., Batouche M., Bendahmane A., Israeli D., Tahi F. IpiRId: Integrative approach for piRNA prediction using genomic and epigenomic data. PLoS ONE. 2017;12:e0179787. doi: 10.1371/journal.pone.0179787. PubMed DOI PMC
Wang K., Hoeksema J., Liang C. piRNN: Deep learning algorithm for piRNA prediction. PeerJ. 2018;6:e5429. doi: 10.7717/peerj.5429. PubMed DOI PMC
Monga I. Computational Identification of piRNAs Using Features Based on RNA Sequence, Structure, Thermodynamic and Physicochemical Properties. Curr. Genom. 2019;20:508–518. doi: 10.2174/1389202920666191129112705. PubMed DOI PMC
Nigro J.M., Cho K., Fearon E.R., Kern S.E., Ruppert J., Oliner J.D., Kinzler K.W., Vogelstein B. Scrambled exons. Cell. 1991;64:607–613. doi: 10.1016/0092-8674(91)90244-S. PubMed DOI
Holdt L.M., Kohlmaier A., Teupser D. Molecular roles and function of circular RNAs in eukaryotic cells. Cell. Mol. Life Sci. 2018;75:1071–1098. doi: 10.1007/s00018-017-2688-5. PubMed DOI PMC
Ashwal-Fluss R., Meyer M., Pamudurti N.R., Ivanov A., Bartok O., Hanan M., Evantal N., Memczak S., Rajewsky N., Kadener S. circRNA Biogenesis Competes with Pre-mRNA Splicing. Mol. Cell. 2014;56:55–66. doi: 10.1016/j.molcel.2014.08.019. PubMed DOI
Jeck W.R., Sorrentino J.A., Wang K., Slevin M.K., Burd C.E., Liu J., Marzluff W.F., Sharpless N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19:141–157. doi: 10.1261/rna.035667.112. PubMed DOI PMC
Ebbesen K.K., Hansen T., Kjems J. Insights into circular RNA biology. RNA Biol. 2016;14:1035–1045. doi: 10.1080/15476286.2016.1271524. PubMed DOI PMC
Guo J.U., Agarwal V., Guo H., Bartel D.P. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014;15:409. doi: 10.1186/s13059-014-0409-z. PubMed DOI PMC
Dong R., Zhang X.-O., Zhang Y., Ma X.-K., Chen L.-L., Yang Z. CircRNA-derived pseudogenes. Cell Res. 2016;26:747–750. doi: 10.1038/cr.2016.42. PubMed DOI PMC
Gruhl F., Janich P., Kaessmann H., Gatfield D. Circular RNA Repertoires Are Associated with Evolutionarily Young Transposable Elements. bioRxiv. 2021 doi: 10.1101/2021.03.01.433421. PubMed DOI PMC
Pray L. Functions and Utility of Alu Jumping Genes. Learn Science at Scitable. Nat. Educ. 2008;1:93.
Zhang X.-O., Wang H.-B., Zhang Y., Lu X., Chen L.-L., Yang L. Complementary Sequence-Mediated Exon Circularization. Cell. 2014;159:134–147. doi: 10.1016/j.cell.2014.09.001. PubMed DOI
Wang J., Wang L. Deep learning of the back-splicing code for circular RNA formation. Bioinformatics. 2019;35:5235–5242. doi: 10.1093/bioinformatics/btz382. PubMed DOI
Chen X., Han P., Zhou T., Guo X., Song X., Li Y. circRNADb: A comprehensive database for human circular RNAs with protein-coding annotations. Sci. Rep. 2016;6:34985. doi: 10.1038/srep34985. PubMed DOI PMC
Glažar P., Papavasileiou P., Rajewsky N. circBase: A database for circular RNAs. RNA. 2014;20:1666–1670. doi: 10.1261/rna.043687.113. PubMed DOI PMC
Wang J., Wang L. Prediction of back-splicing sites reveals sequence compositional features of human circular RNAs; Proceedings of the 2017 IEEE 7th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS); Orlando, FL, USA. 19–21 October 2017; pp. 1–6. DOI
Yin S., Tian X., Zhang J., Sun P., Li G. PCirc: Random forest-based plant circRNA identification software. BMC Bioinform. 2021;22:10. doi: 10.1186/s12859-020-03944-1. PubMed DOI PMC