Mercury in Macrolepiota procera (Scop.) Singer and Its Underlying Substrate-Environmental and Health Risks Assessment

. 2021 Sep 18 ; 7 (9) : . [epub] 20210918

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34575810

Grantová podpora
1/0591/18 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
1/0326/18 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV

Wild-growing edible mushrooms are valuable food with a high content of proteins, fibers, antioxidants, and they are characterized by their specific taste and flavor. However, from an ecotoxicological point of view, they are a risk commodity because of their extremely high bioaccumulative capacity to accumulate the risk elements and contaminants from the environment. In the present study, we examined mercury (Hg) contamination in 230 fruiting bodies of Macrolepiota procera (Scop.) Singer and 230 soil/substrate samples, which were collected in foraging seasons 2015-2019 from 22 different locations in Slovakia. Total mercury content was determined by cold-vapor AAS analyzer AMA 254. The level of contamination and environmental risks were assessed by contamination factor (Cf), index of geoaccumulation (Igeo), and potential environmental risk index (PER). Bioaccumulation factor (BAF) was calculated for individual anatomical parts of M. procera. Mercury content in the soil/substrate samples varied between 0.02 and 0.89 mg kg-1 DW, and in mushroom samples between 0.03 and 2.83 mg kg-1 DW (stems), and between 0.04 and 6.29 mg kg-1 DW (caps). The obtained results were compared with the provisional tolerable weekly intake for Hg defined by WHO to determine a health risk resulting from regular and long-term consumption of M. procera.

Zobrazit více v PubMed

Haro A., Trescastro A., Lara L., Fernández-Fígares I., Nieto R., Seiquer I. Mineral elements contents of wild growing edible mushrooms from the southeast of Spain. J. Food Compos. Anal. 2020;91:103504. doi: 10.1016/j.jfca.2020.103504. DOI

Kunca V., Pavlík M. Fruiting Body Production of, and Suitable Environmental Ranges for, Growing the Umbrella Polypore Medicinal Mushroom, Polyporus umbellatus (Agaricomycetes) in Natural Conditions in Central Europe. Int. J. Med. Mushrooms. 2019;2:121–129. doi: 10.1615/IntJMedMushrooms.2018029539. PubMed DOI

Kunca V., Čiliak. M. Habitat preferences of Hericium erinaceus in Slovakia. Fungal Ecol. 2017;27:189–192. doi: 10.1016/j.funeco.2016.12.002. PubMed DOI PMC

Árvay J., Demková L., Hauptvogl M., Michalko M., Bajčan D., Stanovič R., Tomáš J., Hrstková M., Trebichalský P. Assessment of Environmental and Health Risks in Former Polymetallic Ore Mining and Smelting Area, Slovakia: Spatial Distribution and Accumulation of Mercury in Four Different Ecosystems. Ecotoxicol. Environ. Saf. 2017;144:236–244. doi: 10.1016/j.ecoenv.2017.06.020. PubMed DOI

Melgar M.J., Alonso J., García M.A. Cadmium in edible mushrooms from NW Spain: Bioconcentration factors and consumer health implications. Food Chem. Toxicol. 2016;88:13–20. doi: 10.1016/j.fct.2015.12.002. PubMed DOI

Bahadori M.B., Sarikurkcu C., Yalcin O.U., Cengiz M., Gungor H. Metal concentration, phenolics profiling, and antioxidant activity of two wild edible Melanoleuca mushrooms (M. cognata and M. stridula) Microchem. J. 2019;150:104172. doi: 10.1016/j.microc.2019.104172. DOI

Mleczek M., Siwulski M., Stuper-Szablewska K., Rissmann I., Sobieralski K., Goliński P. Accumulation of elements by edible mushroom species: Part I. Problem of trace element toxicity in mushrooms. J. Environ. Sci. Health. 2013;48:69–81. doi: 10.1080/03601234.2012.716733. PubMed DOI

Kokkoris V., Massas I., Polemis E., Koutrotsios G., Zervakis G.I. Accumulation of heavy metals by wild edible mushrooms with respect to soil substrates in the Athens metropolitan area (Greece) Sci. Total Environ. 2019;685:280–296. doi: 10.1016/j.scitotenv.2019.05.447. PubMed DOI

Melgar M.J., Alonso J., García M.A. Mercury in edible mushrooms and underlying soil: Bioconcentration factors and toxicological risk. Sci. Total Environ. 2009;407:5328–5334. doi: 10.1016/j.scitotenv.2009.07.001. PubMed DOI

Falandysz J., Chudzińska M., Barałkiewicz D.A.N.U.T.A., Saba M., Wang Y., Zhang J. Occurrence, variability and associations of trace metallic elements and arsenic in sclerotia of medicinal Wolfiporia extensa from polymetallic soils in Yunnan, China. Acta Pol. Pharm. Drug Res. 2017;74:1379–1387.

Falandysz J., Hanć A., Barałkiewicz D., Zhang J., Treu R. Metallic and metalloid elements in various developmental stages of Amanita muscaria (L.) Lam. Fungal Biol. 2020;124:174–182. doi: 10.1016/j.funbio.2020.01.008. PubMed DOI

Falandysz J., Sapkota A., Dryżałowska A., Mędyk M., Feng X. Analysis of some metallic elements and metalloids composition and relationships in parasol mushroom Macrolepiota procera. Environ. Sci. Pollut. Res. 2017;24:15528–15537. doi: 10.1007/s11356-017-9136-9. PubMed DOI PMC

Gucia M., Jarzyńska G., Rafał E., Roszak M., Kojta A.K., Osiej I., Falandysz J. Multivariate analysis of mineral constituents of edible Parasol Mushroom (Macrolepiota procera) and soils beneath fruiting bodies collected from Northern Poland. Environ. Sci. Pollut. Res. 2012;19:416–431. doi: 10.1007/s11356-011-0574-5. PubMed DOI PMC

Vukojević V., Đurđić S., Stefanović V., Trifković J., Čakmak D., Perović V., Mutić J. Scandium, yttrium, and lanthanide contents in soil from Serbia and their accumulation in the mushroom Macrolepiota procera (Scop.) Singer. Environ. Sci. Pollut. Res. 2019;26:5422–5434. doi: 10.1007/s11356-018-3982-y. PubMed DOI

Hsu-Kim H., Eckley C.S., Achá D., Feng X., Gilmour C.C., Jonsson S., Mitchell C.P. Challenges and opportunities for managing aquatic mercury pollution in altered landscapes. Ambio. 2018;47:141–169. doi: 10.1007/s13280-017-1006-7. PubMed DOI PMC

Xu J., Zhang J., Lv Y., Xu K., Lu S., Liu X., Yang Y. Effect of soil mercury pollution on ginger (Zingiber officinale Roscoe): Growth, product quality, health risks and silicon mitigation. Ecotoxicol. Environ. Saf. 2020;195:110472. doi: 10.1016/j.ecoenv.2020.110472. PubMed DOI

Tang W.L., Liu Y.R., Guan W.Y., Zhong H., Qu X.M., Zhang T. Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability. Sci. Total Environ. 2020;714:136827. doi: 10.1016/j.scitotenv.2020.136827. PubMed DOI

Kalač P. Mineral Composition and Radioactivity of Edible Mushrooms. Academic Press; Amsterdam, The Netherlands: 2019.

Nayab G.U.L., Sardar K.H.A.N., Abbas K.H.A.N., Nawab J., Sarwar A., Nida G.U.L. Organic and Inorganic Mercury in Biological Samples of Flouresecent Lamp Industries Workers and Health Risks. Biomed. Environ. Sci. 2020;33:89–102. doi: 10.3967/bes2020.013. PubMed DOI

Hakanson L. An Ecological Risk Index for Aquatic Pollution Control. Water Res. 1980;14:975–1001. doi: 10.1016/0043-1354(80)90143-8. DOI

Šefčík P., Pramuka S., Gluch A. Assessment of soil contamination in Slovakia according index of geoaccumulation. Agriculture. 2008;54:119–130.

Islam S., Ahmed K., Masunaga S. Potential ecological risk of hazardous elements in different land-use urban soils of Bangladesh. Sci. Total Environ. 2015;512:94–102. doi: 10.1016/j.scitotenv.2014.12.100. PubMed DOI

Wu S., Peng S., Zhang X., Wu D., Luo W., Zhang T., Wu L. Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. J. Geochem. Explor. 2015;148:71–78. doi: 10.1016/j.gexplo.2014.08.009. DOI

Müller G. Index of geoaccumulation in sediments of the Rhine River. Geojournal. 1969;2:108–118.

Dryźalowska A., Falandysz J. Bioconcentration of mercury by mushroom Xerocomus chrysenteron from the spatially distinct locations: Levels, possible intake and safety. Ecotoxicol. Environ. Saf. 2014;107:97–102. doi: 10.1016/j.ecoenv.2014.05.020. PubMed DOI

Joint F.A.O., World Health Organization. WHO Expert Committee on Food Additives Safety evaluation of certain food additives/prepared by the by the Seventy Fourth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA) 2012. [(accessed on 2 July 2021)]. Available online: https://books.google.ro/books?hl=ro&lr=&id=YFAMU9qYD_YC&oi=fnd&pg=PP7&ots=e5skGh31Ln&sig=W99eNu8GUWHlWsG-ooJzM1dlkws&redir_esc=y#v=onepage&q&f=false.

Statistical Organization of Slovak Republic 2019 Food Consumption in the Slovak Republic 2018. [(accessed on 17 December 2020)]. Available online: www.statistics.sk.

RStudio Team . RStudio: Integrated Development for R. RStudio. PBC; Boston, MA, USA: 2020. [(accessed on 2 July 2021)]. Available online: http://www.rstudio.com/

Addinsoft . XLSTAT, Analyse de Données et Statistique avec MS Excel. Addinsoft; New York, NY, USA: 2014.

Árvay J., Tomáš J., Hauptvogl M., Massányi P., Harangozo Ľ. Human Exposure to Heavy Metals and Possible Public Health Risks Via Consumption of Wild Edible Mushrooms from Slovak Paradise National Park, Slovakia. J. Environ. Sci. Health Part B. 2015;50:833–848. doi: 10.1080/03601234.2015.1058107. PubMed DOI

Árvay J., Záhorcová Z., Tomáš J., Hauptvogl M., Stanovič R., Harangozo Ľ. Mercury in edible wild-grown mushrooms from historical mining area–Slovakia: Bioaccumulation and risk assessment. J. Microbiol. Biotechnol. Food Sci. 2021:1–4. doi: 10.15414/jmbfs.2015.4.special3.1-4. DOI

Falandysz J., Bielawski L., Kawano M., Brzostowski A., Chudzyński K. Mercury in mushrooms and soil from the Wieluńska Upland in south-central Poland. J. Environ. Sci. Health Part A. 2002;37:1409–1420. doi: 10.1081/ESE-120013266. PubMed DOI

Falandysz J., Gucia M. Bioconcentration factors of mercury by Parasol Mushroom (Macrolepiota procera) Environ. Geochem. Health. 2008;30:121–125. doi: 10.1007/s10653-008-9133-5. PubMed DOI

Mleczek M., Siwulski M., Budka A., Mleczek P., Budzyńska S., Szostek M., Goliński P. Toxicological risks and nutritional value of wild edible mushroom species-a half-century monitoring study. Chemosphere. 2021;263:128095. doi: 10.1016/j.chemosphere.2020.128095. PubMed DOI

Environmental Regionalization of the Slovak Republic. 2016. [(accessed on 17 December 2017)]. Available online: https://www.minzp.sk/files/environmentalna-regionalizacia-sr.pdf.

Mleczek M., Budka A., Kalač P., Siwulski M., Niedzielski P. Family and species as determinants modulating mineral composition of selected wild-growing mushroom species. Environ. Sci. Pollut. Res. 2020:1–16. doi: 10.1007/s11356-020-10508-6. PubMed DOI PMC

Falandysz J., Borovička J. Macro and trace mineral constituents and radionuclides in mushrooms: Health benefits and risks. Appl. Microbiol. Biotechnol. 2013;97:477–501. doi: 10.1007/s00253-012-4552-8. PubMed DOI PMC

Zocher A.L., Kraemer D., Merschel G., Bau M. Distribution of major and trace elements in the bolete mushroom Suillus luteus and the bioavailability of rare earth elements. Chem. Geol. 2018;483:491–500. doi: 10.1016/j.chemgeo.2018.03.019. DOI

Falandysz J., Gucia M., Mazur A. Content and bioconcentration factors of mercury by Parasol Mushroom Macrolepiota procera. J. Environ. Sci. Health Part B. 2007;42:735–740. doi: 10.1080/03601230701466005. PubMed DOI

Giannaccini G., Betti L., Palego L., Mascia G., Schmid L., Lanza M., Lucacchini A. The trace element content of top-soil and wild edible mushroom samples collected in Tuscany, Italy. Environ. Monit. Assess. 2012;184:7579–7595. doi: 10.1007/s10661-012-2520-5. PubMed DOI

World Health Organization . Evaluation of Certain Food Additives and Contaminants. Twenty-Second Report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization; Geneva, Switzerland: 1978. No. 631. PubMed

EPA, US . Toxicological Review of Zinc and Compounds. US Environmental Protection Agency; Washington, DC, USA: 2005.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...