Family and species as determinants modulating mineral composition of selected wild-growing mushroom species
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
005/RID/2018/19
Ministerstwo Nauki i Szkolnictwa Wyższego
PubMed
32812153
PubMed Central
PMC7782397
DOI
10.1007/s11356-020-10508-6
PII: 10.1007/s11356-020-10508-6
Knihovny.cz E-zdroje
- Klíčová slova
- Accumulation, Mineral elements, Mushroom family, Mushroom species, Wild-growing mushrooms,
- MeSH
- Agaricales * MeSH
- Agaricus MeSH
- Coprinus MeSH
- lidé MeSH
- minerály analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Polsko MeSH
- Názvy látek
- minerály MeSH
It has been known since the 1970s that differences exist in the profile of element content in wild-growing mushroom species, although knowledge of the role of mushroom species/families as determinants in the accumulation of diverse element remains limited. The aim of this study was to determine the content of 63 mineral elements, divided into six separate groups in the fruit bodies of 17 wild-growing mushroom species. The mushrooms, growing in widely ranging types of soil composition, were collected in Poland in 2018. Lepista nuda and Paralepista gilva contained not only the highest content of essential major (531 and 14,800 mg kg-1, respectively of Ca and P) and trace elements (425 and 66.3 mg kg-1, respectively of Fe and B) but also a high content of trace elements with a detrimental health effect (1.39 and 7.29 mg kg-1, respectively of Tl and Ba). A high content of several elements (Al, B, Ba, Bi, Ca, Er, Fe, Mg, Mo, P, Sc, Ti or V) in L. nuda, Lepista personata, P. gilva and/or Tricholoma equestre fruit bodies belonging to the Tricholomataceae family suggests that such species may be characterised by the most effective accumulation of selected major or trace elements. On the other hand, mushrooms belonging to the Agaricaceae family (Agaricus arvensis, Coprinus comatus and Macrolepiota procera) were characterised by significant differences in the content of all determined elements jointly, which suggests that a higher content of one or several elements is mushroom species-dependent. Graphical abstract.
Department of Chemistry Poznan University of Life Sciences Poznań Poland
Department of Mathematical and Statistical Methods Poznan University of Life Sciences Poznań Poland
Department of Vegetable Crops Poznan University of Life Sciences Poznań Poland
Faculty of Chemistry Adam Mickiewicz University in Poznań Poznań Poland
Zobrazit více v PubMed
Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat 2:433–459. 10.1002/wics.101
Alonso J, Salgado J, García MA, Melgar MJ (2000) Accumulation of mercury in edible macrofungi: influence of some factors. Arch Environ Contam Toxicol 38:158–162. 10.1007/s002449910020 PubMed
Andersen A, Lykke S-E, Lange M, Bech K (1982) [Trace elements in edible mushrooms]. Publ. 68, Stat Levnedsmiddelinst Denmark, 29 pp. (in Danish)
Árvay J, Tomáš J, Hauptvogel M, Massányi P, Harangozo Ľ, Tóth T, Stanovič R, Bryndzová Š, Bumbalová M (2015) Human exposure to heavy metals and possible public health risks via consumption of wild edible mushrooms from Slovak Paradise National Park, Slovakia. J Environ Sci Health B 50:833–843. 10.1080/03601234.2015.1058107 PubMed
Braeuer S, Goessler W, Kameník J, Konvalinková T, Žigová A, Borovička J (2018) Arsenic hyperaccumulation and speciation in the edible ink stain bolete ( PubMed PMC
Campos JA, Tejera NA (2011) Bioconcentration factors and trace elements bioaccumulation in sporocarps of fungi collected from quartzite acidic soils. Biol Trace Elem Res 142:540–554. 10.1007/s12011-010-8853-4 PubMed
Falandysz J, Borovička J (2013) Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl Microbiol Biotechnol 97:477–501. 10.1007/s00253012-4552-8 PubMed PMC
Falandysz J, Drewnowska M (2015) Macro and trace elements in common chanterelle ( PubMed
Falandysz J, Zhang J, Wang Y, Krasińska G, Kojta A, Saba M, Shen T, Li T, Liu H (2015) Evaluation of the mercury contamination in mushrooms of genus PubMed
Falandysz J, Hanć A, Barałkiewicz D, Zhang J, Treu R (2020) Metallic and metalloid elements in various developmental stages of PubMed
Gast CH, Jansen E, Bierling J, Haanstra L (1988) Heavy metals in mushrooms and their relationship with soil characteristics. Chemosphere 17:789–799. 10.1016/0045-6535(88)90258-5
Kalač P (2010) Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000-2009. Food Chem 122:2–15. 10.1016/j.foodchem.2010.02.045
Kalač P (2019) Mineral composition and radioactivity of edible mushrooms. Academic Press / Elsevier, ISBN 978-0-12-817565-1
Kalač P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:273–281. 10.1016/S0308-8146(99)00264-2
Lis J, Pasieczna A (2005) Atlas geochemiczny Poznania i okolic. [Geochemical atlas of Poznań and surrounding area]. Państwowy Instytut Geologiczny, Warsaw [in Polish]
Melgar MJ, Alonso J, García MA (2009) Mercury in edible mushrooms and underlying soils: bioconcentration factors and toxicological risk. Sci Total Environ 407:5328–5334. 10.1016/j.scitotenv.2009.07.001 PubMed
Melgar MJ, Alonso J, García MA (2016) Cadmium in edible mushrooms from NW Spain: bioconcentration factors and consumer health implications. Food Chem Toxicol 88:13–20. 10.1016/j.fct.2015.12.002 PubMed
Morrison DF (1990) Multivariate statistical methods, 3rd edn. McGraw-Hill Co., New York
Radulescu C, Stihi C, Busuioc G, Gheboianu AI, Popescu IV (2010) Studies concerning heavy metals bioaccumulation of wild edible mushrooms from industrial area by using spectrometric techniques. Bull Environ Contam Toxicol 84:641–646. 10.1007/s00128-010-9976-1 PubMed
Rudawska M, Leski T (2005) Macro- and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in west-central Poland. Food Chem 92:499–506. 10.1016/j.foodchem.2004.08.017
Sácký J, Leonhardt T, Kotrba P (2016) Functional analysis of two genes coding for distinct cation diffusion facilitators of the ectomycorrhizal Zn-accumulating fungus PubMed
Sarikurkcu C, Tepe B, Kocak MS, Uren MC (2015) Metal concentration and antioxidant activity of edible mushrooms from Turkey. Food Chem 175:549–555. 10.1016/j.foodchem.2014.12.019 PubMed
Seeger R (1976) Mercury content of mushrooms. Z Lebensm-Unters Forsch 160:303–312. 10.1007/BF01132296 (in German) PubMed
Seeger R (1978) The potassium content of mushrooms. Z Lebensm-Unters Forsch 167:23–31. 10.1007/BF01122881 (in German) PubMed
Seeger R, Beckert M (1979) Magnesium content of higher fungi. Z Lebensm-Unters Forsch 168:264–281. 10.1007/BF01122881 (in German)
Seeger R, Hüttner W (1981) Calcium in mushrooms. Dtsch Lebensm-Rundsch 77:385–392 (in German)
Seeger R, Trumpfheller S, Schweinshaut P (1983) On the occurrence of sodium in fungi. Dtsch Lebensm-Rundsch 79:80–87 (in German)
Seeger R, Schleicher G, Schweinshaut P (1984) Investigation into the occurrence of beryllium in mushrooms. Dtsch Lebensm-Rundsch 80:178–186 (in German)
Siwulski M, Budka A, Rzymski P, Mleczek P, Budzyńska S, Gąsecka M, Szostek M, Kalač P, Kuczyńska-Kippen N, Niedzielski P, Goliński P, Magdziak Z, Kaniuczak J, Mleczek M (2020) Multiannual monitoring (1974-2019) of rare earth elements in wild growing edible mushroom species in Polish forests. Chemosphere:127173. 10.1016/j.chemosphere.2020.127173 in press PubMed
Sun L, Chang W, Bao C, Zhuang Y (2017) Metal contents, bioaccumulation, and health risk assessment in wild edible PubMed
Tyler G (1982) Accumulation and exclusion of metals in
Zavastin DE, Biliută G, Dodi G, Macsim A-M, Lisa G, Gherman SP, Breabăn IG, Miron A, Coseri S (2018) Metal content and crude polysaccharide characterization of selected mushrooms growing in Romania. J Food Compos Anal 67:149–158. 10.1016/j.jfca.2018.01.011