Family and species as determinants modulating mineral composition of selected wild-growing mushroom species
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
005/RID/2018/19
Ministerstwo Nauki i Szkolnictwa Wyższego
PubMed
32812153
PubMed Central
PMC7782397
DOI
10.1007/s11356-020-10508-6
PII: 10.1007/s11356-020-10508-6
Knihovny.cz E-resources
- Keywords
- Accumulation, Mineral elements, Mushroom family, Mushroom species, Wild-growing mushrooms,
- MeSH
- Agaricales * MeSH
- Agaricus MeSH
- Coprinus MeSH
- Humans MeSH
- Minerals analysis MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Poland MeSH
- Names of Substances
- Minerals MeSH
It has been known since the 1970s that differences exist in the profile of element content in wild-growing mushroom species, although knowledge of the role of mushroom species/families as determinants in the accumulation of diverse element remains limited. The aim of this study was to determine the content of 63 mineral elements, divided into six separate groups in the fruit bodies of 17 wild-growing mushroom species. The mushrooms, growing in widely ranging types of soil composition, were collected in Poland in 2018. Lepista nuda and Paralepista gilva contained not only the highest content of essential major (531 and 14,800 mg kg-1, respectively of Ca and P) and trace elements (425 and 66.3 mg kg-1, respectively of Fe and B) but also a high content of trace elements with a detrimental health effect (1.39 and 7.29 mg kg-1, respectively of Tl and Ba). A high content of several elements (Al, B, Ba, Bi, Ca, Er, Fe, Mg, Mo, P, Sc, Ti or V) in L. nuda, Lepista personata, P. gilva and/or Tricholoma equestre fruit bodies belonging to the Tricholomataceae family suggests that such species may be characterised by the most effective accumulation of selected major or trace elements. On the other hand, mushrooms belonging to the Agaricaceae family (Agaricus arvensis, Coprinus comatus and Macrolepiota procera) were characterised by significant differences in the content of all determined elements jointly, which suggests that a higher content of one or several elements is mushroom species-dependent. Graphical abstract.
Department of Chemistry Poznan University of Life Sciences Poznań Poland
Department of Mathematical and Statistical Methods Poznan University of Life Sciences Poznań Poland
Department of Vegetable Crops Poznan University of Life Sciences Poznań Poland
Faculty of Chemistry Adam Mickiewicz University in Poznań Poznań Poland
See more in PubMed
Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev Comput Stat. 2010;2:433–459. doi: 10.1002/wics.101. DOI
Alonso J, Salgado J, García MA, Melgar MJ. Accumulation of mercury in edible macrofungi: influence of some factors. Arch Environ Contam Toxicol. 2000;38:158–162. doi: 10.1007/s002449910020. PubMed DOI
Andersen A, Lykke S-E, Lange M, Bech K (1982) [Trace elements in edible mushrooms]. Publ. 68, Stat Levnedsmiddelinst Denmark, 29 pp. (in Danish)
Árvay J, Tomáš J, Hauptvogel M, Massányi P, Harangozo Ľ, Tóth T, Stanovič R, Bryndzová Š, Bumbalová M. Human exposure to heavy metals and possible public health risks via consumption of wild edible mushrooms from Slovak Paradise National Park, Slovakia. J Environ Sci Health B. 2015;50:833–843. doi: 10.1080/03601234.2015.1058107. PubMed DOI
Braeuer S, Goessler W, Kameník J, Konvalinková T, Žigová A, Borovička J. Arsenic hyperaccumulation and speciation in the edible ink stain bolete (Cyanoboletus pulverulentus) Food Chem. 2018;242:225–231. doi: 10.1016/j.foodchem.2017.09.038. PubMed DOI PMC
Campos JA, Tejera NA. Bioconcentration factors and trace elements bioaccumulation in sporocarps of fungi collected from quartzite acidic soils. Biol Trace Elem Res. 2011;142:540–554. doi: 10.1007/s12011-010-8853-4. PubMed DOI
Falandysz J, Borovička J. Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl Microbiol Biotechnol. 2013;97:477–501. doi: 10.1007/s00253012-4552-8. PubMed DOI PMC
Falandysz J, Drewnowska M. Macro and trace elements in common chanterelle (Cantharellus cibarius) mushroom from the European background areas in Poland: composition, accumulation, dietary exposure and data review for species. J Environ Sci Health B. 2015;50:374–387. doi: 10.1080/03601234.2015.1000190. PubMed DOI
Falandysz J, Zhang J, Wang Y, Krasińska G, Kojta A, Saba M, Shen T, Li T, Liu H. Evaluation of the mercury contamination in mushrooms of genus Leccinum from two different regions of the world: accumulation, distribution and probable dietary intake. Sci Total Environ. 2015;537:470–478. doi: 10.1016/j.scitotenv.2015.07.159. PubMed DOI
Falandysz J, Hanć A, Barałkiewicz D, Zhang J, Treu R. Metallic and metalloid elements in various developmental stages of Amanita muscaria (L.) Lam. Fungal Biol. 2020;124:174–182. doi: 10.1016/j.funbio.2020.01.008. PubMed DOI
Gast CH, Jansen E, Bierling J, Haanstra L. Heavy metals in mushrooms and their relationship with soil characteristics. Chemosphere. 1988;17:789–799. doi: 10.1016/0045-6535(88)90258-5. DOI
Kalač P. Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000-2009. Food Chem. 2010;122:2–15. doi: 10.1016/j.foodchem.2010.02.045. DOI
Kalač P (2019) Mineral composition and radioactivity of edible mushrooms. Academic Press / Elsevier, ISBN 978-0-12-817565-1
Kalač P, Svoboda L. A review of trace element concentrations in edible mushrooms. Food Chem. 2000;69:273–281. doi: 10.1016/S0308-8146(99)00264-2. DOI
Lis J, Pasieczna A (2005) Atlas geochemiczny Poznania i okolic. [Geochemical atlas of Poznań and surrounding area]. Państwowy Instytut Geologiczny, Warsaw [in Polish]
Melgar MJ, Alonso J, García MA. Mercury in edible mushrooms and underlying soils: bioconcentration factors and toxicological risk. Sci Total Environ. 2009;407:5328–5334. doi: 10.1016/j.scitotenv.2009.07.001. PubMed DOI
Melgar MJ, Alonso J, García MA. Cadmium in edible mushrooms from NW Spain: bioconcentration factors and consumer health implications. Food Chem Toxicol. 2016;88:13–20. doi: 10.1016/j.fct.2015.12.002. PubMed DOI
Morrison DF. Multivariate statistical methods. 3. New York: McGraw-Hill Co.; 1990.
Radulescu C, Stihi C, Busuioc G, Gheboianu AI, Popescu IV. Studies concerning heavy metals bioaccumulation of wild edible mushrooms from industrial area by using spectrometric techniques. Bull Environ Contam Toxicol. 2010;84:641–646. doi: 10.1007/s00128-010-9976-1. PubMed DOI
Rudawska M, Leski T. Macro- and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in west-central Poland. Food Chem. 2005;92:499–506. doi: 10.1016/j.foodchem.2004.08.017. DOI
Sácký J, Leonhardt T, Kotrba P. Functional analysis of two genes coding for distinct cation diffusion facilitators of the ectomycorrhizal Zn-accumulating fungus Russula atropurpurea. Biometals. 2016;29:349–363. doi: 10.1007/s10534-016-9920-x. PubMed DOI
Sarikurkcu C, Tepe B, Kocak MS, Uren MC. Metal concentration and antioxidant activity of edible mushrooms from Turkey. Food Chem. 2015;175:549–555. doi: 10.1016/j.foodchem.2014.12.019. PubMed DOI
Seeger R. Mercury content of mushrooms. Z Lebensm-Unters Forsch. 1976;160:303–312. doi: 10.1007/BF01132296. PubMed DOI
Seeger R. The potassium content of mushrooms. Z Lebensm-Unters Forsch. 1978;167:23–31. doi: 10.1007/BF01122881. PubMed DOI
Seeger R, Beckert M. Magnesium content of higher fungi. Z Lebensm-Unters Forsch. 1979;168:264–281. doi: 10.1007/BF01122881. DOI
Seeger R, Hüttner W. Calcium in mushrooms. Dtsch Lebensm-Rundsch. 1981;77:385–392.
Seeger R, Trumpfheller S, Schweinshaut P. On the occurrence of sodium in fungi. Dtsch Lebensm-Rundsch. 1983;79:80–87.
Seeger R, Schleicher G, Schweinshaut P. Investigation into the occurrence of beryllium in mushrooms. Dtsch Lebensm-Rundsch. 1984;80:178–186.
Siwulski M, Budka A, Rzymski P, Mleczek P, Budzyńska S, Gąsecka M, Szostek M, Kalač P, Kuczyńska-Kippen N, Niedzielski P, Goliński P, Magdziak Z, Kaniuczak J, Mleczek M (2020) Multiannual monitoring (1974-2019) of rare earth elements in wild growing edible mushroom species in Polish forests. Chemosphere:127173. 10.1016/j.chemosphere.2020.127173 in press PubMed
Sun L, Chang W, Bao C, Zhuang Y. Metal contents, bioaccumulation, and health risk assessment in wild edible Boletaceae mushrooms. J Food Sci. 2017;82:1500–1508. doi: 10.1111/1750-3841.13698. PubMed DOI
Tyler G. Accumulation and exclusion of metals in Collybia peronata and Amanita rubescens. Trans Br Mycol Soc. 1982;79:239–245. doi: 10.1016/S0007-1536(82)80109-5. DOI
Zavastin DE, Biliută G, Dodi G, Macsim A-M, Lisa G, Gherman SP, Breabăn IG, Miron A, Coseri S. Metal content and crude polysaccharide characterization of selected mushrooms growing in Romania. J Food Compos Anal. 2018;67:149–158. doi: 10.1016/j.jfca.2018.01.011. DOI