Arsenic hyperaccumulation and speciation in the edible ink stain bolete (Cyanoboletus pulverulentus)
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
I 2352
Austrian Science Fund FWF - Austria
PubMed
29037683
PubMed Central
PMC6118325
DOI
10.1016/j.foodchem.2017.09.038
PII: S0308-8146(17)31487-5
Knihovny.cz E-zdroje
- Klíčová slova
- Dimethylarsinic acid, Edible mushrooms, HPLC-ICPMS, Health risk, Soil,
- MeSH
- arsen analýza farmakokinetika MeSH
- arsenikové přípravky analýza metabolismus MeSH
- Basidiomycota účinky léků metabolismus MeSH
- kontaminace potravin analýza MeSH
- kyselina kakodylová analýza metabolismus MeSH
- látky znečišťující půdu analýza farmakokinetika MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- arsen MeSH
- arsenikové přípravky MeSH
- kyselina kakodylová MeSH
- látky znečišťující půdu MeSH
- monomethylarsonic acid MeSH Prohlížeč
The edible ink stain bolete (Cyanoboletus pulverulentus) was found to hyperaccumulate arsenic. We analyzed 39 individual collections determined as C. pulverulentus, mostly from the Czech Republic. According to our results, concentrations of arsenic in C. pulverulentus fruit-bodies may reach 1300mgkg-1 dry weight. In most collections, data for total and bioavailable arsenic in underlying soils were collected but no significant correlation between the soil arsenic content and arsenic concentrations in the associated fruit-bodies was found. Within the fruit-bodies, we found the majority of arsenic accumulated in the hymenium. Besides occasional traces of methylarsonic acid (MA), the arsenic speciation in all mushroom samples consisted solely of dimethylarsinic acid (DMA) and no inorganic arsenic was detected. Because of the carcinogenic potential of DMA, C. pulverulentus should not be recommended as an edible mushroom and its consumption should be restricted.
Institute of Geology The Czech Academy of Sciences Rozvojová 269 16500 Prague 6 Czech Republic
Institute of Microbiology The Czech Academy of Sciences Vídeňská 1083 14220 Prague 4 Czech Republic
Nuclear Physics Institute The Czech Academy of Sciences Hlavní 130 25068 Husinec Řež Czech Republic
University of Graz Institute of Chemistry Universitätsplatz 1 8010 Graz Austria
Zobrazit více v PubMed
Baize D. Soil science analyses. A guide to current use. Chichester: John Wiley & Sons; 1993.
Beneš V, Hložková K, Matĕnová M, Borovička J, Kotrba P. Accumulation of Ag and Cu in Amanita strobiliformis and characterization of its Cu and Ag uptake transporter genes AsCTR2 and AsCTR3. Biometals. 2016;29:249–264. doi: 10.1007/s10534-016-9912-x. PubMed DOI
Borovička J, Braeuer S, Žigová A, Gryndler M, Dima B, Goessler W, et al. Kärcher R. Resurrection of Cortinarius coalescens: Taxonomy, chemistry, and ecology. Mycological Progress. 2017;16:927–939. doi: 10.1007/s11557-017-1331-z. PubMed DOI PMC
Borovička J, Dunn CE, Gryndler M, Mihaljevič M, Jelínek E, Rohovec J, et al. Řanda Z. Bioaccumulation of gold in macrofungi and ectomycorrhizae from the vicinity of the Mokrsko gold deposit, Czech Republic. Soil Biology & Biochemistry. 2010;42:83–91. doi: 10.1016/j.soilbio.2009.10.003. DOI
Borovička J, Noordeloos ME, Gryndler M, Oborník M. Molecular phylogeny of Psilocybe cyanescens complex in Europe, with reference to the position of the secotioid Weraroa novae-zelandiae. Mycological Progress. 2011;10:149–155. doi: 10.1007/s11557-010-0684-3. DOI
Borovička J, Oborník M, Stříbrný J, Noordeloos ME, Parra Sánchez LA, Gryndler M. Phylogenetic and chemical studies in the potential psychotropic species complex of Psilocybe atrobrunnea with taxonomic and nomenclatoral notes. Persoonia. 2015;34:1–9. doi: 10.3767/003158515X685283. PubMed DOI PMC
Borovička J, Řanda Z, Jelínek E. Gold content of ectomycorrhizal and saprobic macrofungi from non-auriferous and unpolluted areas. Mycological Research. 2005;109:951–955. doi: 10.1017/S095375620500328X. PubMed DOI
Brooks RR. General introduction. In: Brooks RR, editor. Plants that hyperaccumulate heavy metals: Their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International; 1998.
Byrne AR, Šlejkovec Z, Stijve T, Fay L, Gössler W, Gailer J, Irgolic KJ. Arsenobetaine and other arsenic species in mushrooms. Applied Organometallic Chemistry. 1995;9:305–313. doi: 10.1002/aoc.590090403. DOI
Cejpková J, Gryndler M, Hršelová H, Kotrba P, Řanda Z, Synková I, Borovička J. Bioaccumulation of heavy metals, metalloids, and chlorine in ectomycorrhizae from smelter-polluted area. Environmental Pollution. 2016;218:176–185. doi: 10.1016/j.envpol.2016.08.009. PubMed DOI
Cocchi L, Vescovi L. Considerazioni sulle concentrazioni di elementi chimici in funghi dell'Ordine Boletales. Il Fungo, Associazione Micologica Bresadola. 1996:42–60.
EFSA (European Food Safety Authority) Guidance of the Scientific Committee on a request from EFSA related to a harmonised approach for risk assessment of substances which are both genotoxic and carcinogenic. The EFSA Journal. 2005;282:1–31. doi: 10.2903/j.efsa.2005.282. DOI
Falandysz J, Borovička J. Macro and trace mineral constituents and radionuclides in mushrooms: Health benefits and risks. Applied Microbiology and Biotechnology. 2013;97:477–501. doi: 10.1007/s00253-012-4552-8. PubMed DOI PMC
Falandysz J, Rizal LM. Arsenic and its compounds in mushrooms: A review. Journal of Environmental Science and Health, Part C. 2016;34:217–232. doi: 10.1080/10590501.2016.1235935. PubMed DOI
Gryndler M, Hršelová H, Soukupová L, Borovička J. Silver release from decomposed hyperaccumulating Amanita solitaria fruit-body biomass strongly affects soil microbial community. Biometals. 2012;25:987–993. doi: 10.1007/s10534-012-9564-4. PubMed DOI
IARC. Monographs volume 100C: Arsenic, metals, fibres and dusts; A review of human carcinogens - Arsenic and arsenic compounds. Lyon: International Agency for Research on Cancer; 2012.
Janda V, Kříž M, Konvalinková T, Borovička J. Macroscopic variability of Rubroboletus legaliae with special regard to Boletus spinarii. Czech Mycology. 2017;69:31–50.
Kabata-Pendias A. Trace elements in soils and plants. 4th ed. Boca Raton: CRC Press; 2011. (Chapter 20)
Kaise T, Watanabe S, Itoh K. The acute toxicity of arsenobetaine. Chemosphere. 1985;14:1327–1332. doi: 10.1016/0045-6535(85)90153-5. DOI
Kalač P. Trace element contents in European species of wild growing edible mushrooms: A review for the period 2000–2009. Food Chemistry. 2010;122:2–15. doi: 10.1016/j.foodchem.2010.02.045. DOI
Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics. 2008;9:286–298. doi: 10.1093/bib/bbn013. PubMed DOI
Kovačevič M, Goessler W. Direct introduction of volatile carbon compounds into the spray chamber of an inductively coupled plasma mass spectrometer: Sensitivity enhancement for selenium. Spectrochimica Acta Part B: Atomic Spectroscopy. 2005;60:1357–1362. doi: 10.1016/j.sab.2005.08.003. DOI
Kubrová J, Žigová A, Řanda Z, Rohovec J, Gryndler M, Krausová I, et al. Borovička J. On the possible role of macrofungi in the biogeochemical fate of uranium in polluted forest soils. Journal of Hazardous Materials. 2014;280:79–88. doi: 10.1016/j.jhazmat.2014.07.050. PubMed DOI
Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Larsen EH, Hansen M, Gössler W. Speciation and health risk considerations of arsenic in the edible mushroom Laccaria amethystina collected from contaminated and uncontaminated locations. Applied Organometallic Chemistry. 1998;12:285–291. doi: 10.1002/(SICI)1099-0739(199804)12:4<285::AID-AOC706>3.3.CO;2-R. DOI
Mleczek M, Niedzielski P, Rzymski P, Siwulski M, Gasecka M, Kozak L. Variations of arsenic species content in edible Boletus badius growing at polluted sites over four years. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes. 2016;51:469–476. doi: 10.1080/03601234.2016.1159459. PubMed DOI
Nearing MM, Koch I, Reimer KJ. Arsenic speciation in edible mushrooms. Environmental Science and Technology. 2014;48:14203–14210. doi: 10.1021/es5038468. PubMed DOI
Nearing MM, Koch I, Reimer KJ. Uptake and transformation of arsenic during the reproductive life stage of Agaricus bisporus and Agaricus campestris. Journal of Environmental Sciences. 2016;49:140–149. doi: 10.1016/j.jes.2016.06.021. PubMed DOI
Newcombe C, Raab A, Williams PN, Deacon C, Haris PI, Meharg AA, Feldmann J. Accumulation or production of arsenobetaine in humans? Journal of Environmental Monitoring. 2010;12:832–837. doi: 10.1039/b921588c. PubMed DOI
Niedzielski P, Mleczek M, Magdziak Z, Siwulski M, Kozak L. Selected arsenic species: As(III), As(V) and dimethylarsenic acid (DMAA) in Xerocomus badius fruiting bodies. Food Chemistry. 2013;141:3571–3577. doi: 10.1016/j.foodchem.2013.06.103. PubMed DOI
Scheer J, Findenig S, Goessler W, Francesconi KA, Howard B, Umans JG, et al. Navas-Ancien A. Arsenic species and selected metals in human urine: Validation of HPLC/ICPMS and ICPMS procedures for a long-term population-based epidemiological study. Analytical Methods. 2012;4:406–413. doi: 10.1039/C2AY05638K. PubMed DOI PMC
Šlejkovec Z, Byrne AR, Stijve T, Goessler W, Irgolic KJ. Arsenic compounds in higher fungi. Applied Organometallic Chemistry. 1997;11:673–682. doi: 10.1002/(SICI)1099-0739(199708)11:8<673::AID-AOC620>3.0.CO;2-1. DOI
Smotlacha F, Vejrych R. 50 recommended edible mushrooms (In Czech) Prague: Unie130; 1947.
Sun J, Ma L, Yang Z, Lee H, Wang L. Speciation and determination of bioavailable arsenic species in soil samples by one-step solvent extraction and high-performance liquid chromatography with inductively coupled plasma mass spectrometry. Journal of Separation Science. 2015;38:943–950. doi: 10.1002/jssc.201401221. PubMed DOI
Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution. 1993;10:512–526. PubMed
US EPA. Office of pesticide programs. Revised science issue paper: Mode of action for cacodylic acid (dimethylarsinic acid, DMAV) and recommendations for dose response extrapolation. Health Effects Division; 2006. [Accessed 15.5.2017]. https://www.regulations.gov/document?D=EPA-HQ-OPP-2006-0201-0012.
US EPA. Office of pesticide programs chemicals evaluated for carcinogenic potential – Annual cancer report. [Accessed 15.5.2017];2016 http://npic.orst.edu/chemicals_evaluated.pdf.
van Reeuwijk LP. Procedures for soil analysis. Wageningen: International Soil Reference and Information Centre; 2002. (Technical paper 9)
Vetter J. Arsenic content of some edible mushroom species. European Food Research and Technology. 2004;219:71–74. doi: 10.1007/s00217-004-0905-6. DOI
Wenzel WW, Kirchbaumer N, Prohaska T, Stingeder G, Lombic E, Adriano DC. Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta. 2001;436:309–323. doi: 10.1016/S0003-2670(01)00924-2. DOI
Homoarsenocholine - A novel arsenic compound detected for the first time in nature