Homoarsenocholine - A novel arsenic compound detected for the first time in nature
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
I 2352
Austrian Science Fund FWF - Austria
PubMed
30029352
PubMed Central
PMC6118324
DOI
10.1016/j.talanta.2018.05.065
PII: S0039-9140(18)30557-5
Knihovny.cz E-zdroje
- Klíčová slova
- (3-hydroxypropyl) trimethylarsonium ion, Arsenic speciation, Fungi, Homoarsenocholine, ICPMS, Ramaria,
- MeSH
- acetáty chemie izolace a purifikace MeSH
- arsenikové přípravky chemie izolace a purifikace MeSH
- Basidiomycota chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetáty MeSH
- arsenikové přípravky MeSH
- dimethylarsinoylacetic acid MeSH Prohlížeč
The arsenic speciation was determined in macrofungi of the Ramaria genus with HPLC coupled to inductively coupled plasma mass spectrometry. Besides arsenic species that are already known for macrofungi, like arsenobetaine or arsenocholine, two compounds that were only known from marine samples so far (trimethylarsoniopropanate and dimethylarsinoylacetate) were found for the first time in a terrestrial sample. An unknown arsenical was isolated and identified as homoarsenocholine. This could be a key intermediate for further elucidation of the biotransformation mechanisms of arsenic.
Zobrazit více v PubMed
Byrne AR, Šlejkovec Z, Stijve T, Fay L, Goessler W, Gailer J, Irgolic KJ. Arsenobetaine and other arsenic species in mushrooms. Appl Organomet Chem. 1995;9:305–313.
Braeuer S, Goessler W, Kameník J, Konvalinková T, Žigová A, Borovička J. Arsenic hyperaccumulation and speciation in the edible ink stain bolete (Cyanoboletus pulverulentus) Food Chem. 2018;242:225–231. PubMed PMC
Falandysz J, Rizal LM. Arsenic and its compounds in mushrooms: a review. J Environ Sci Health Pt C-Environ Carcinog Ecotoxicol Rev. 2016;34:217–232. PubMed
Vahter M. Mechanisms of arsenic biotransformation. Toxicology. 2002;181–182:211–217. PubMed
Ruiz-Chancho MJ, López-Sánchez JF, Rubio R. Occurrence of methylated arsenic species in parts of plants growing in polluted soils. Int J Environ Anal Chem. 2011;91:844–855.
Tremlová J, Sehnal M, Száková J, Goessler W, Steiner O, Najmanová J, Horáková T, Tlustoš P. A profile of arsenic species in different vegetables growing in arsenic-contaminated soils. Arch Agron Soil Sci. 2016;63:918–927.
Nearing MM, Koch I, Reimer KJ. Arsenic speciation in edible mushrooms. Environ Sci Technol. 2014;48:14203–14210. PubMed
Šlejkovec Z, Byrne AR, Stijve T, Goessler W, Irgolic KJ. Arsenic compounds in higher fungi. Appl Organomet Chem. 1997;11:673–682.
Nearing MM, Koch I, Reimer KJ. Uptake and transformation of arsenic during the vegetative life stage of terrestrial fungi. Environ Pollut. 2015;197:108–115. PubMed
Nearing MM, Koch I, Reimer KJ. Uptake and transformation of arsenic during the reproductive life stage of Agaricus bisporus and Agaricus campestris. J Environ Sci. 2016;49:140–149. PubMed
Hoffmann T, Warmbold B, Smits SHJ, Tschapek B, Ronzheimer S, Bashir A, Chen C, Rolbetzki A, Pittelkow M, Jebbar M, Seubert A, et al. Arsenobetaine: an ecophysiologically important organoarsenical confers cytoprotection against osmotic stress and growth temperature extremes. Environ Microbiol. 2018;20:305–323. PubMed
Sallis ESV, Raffi MB, Riet-Correa F. Experimental poisoning in sheep with frozen or dried Ramaria flavo-brunnescens. Pesqui Vet Bras. 2004;24:107–110.
Byrne AR, Ravnik V, Kosta L. Trace element concentrations in higher fungi. Sci Total Environ. 1976;6:65–78. PubMed
Slekovec M, Irgolic KJ. Uptake of arsenic by mushrooms from soil. Chem Speciat Bioavailab. 1996;8:67–73.
Sesli E, Tüzen MT. Levels of trace elements in the fruiting bodies of macrofungi growing in the East Black Sea region of Turkey. Food Chem. 1999;65:453–460.
Konuk M, Afyon A, Yagiz D. Minor element and heavy metal contents of wild growing and edible mushrooms from western Black Sea region of Turkey. Fresenius Environ Bull. 2007;16:1359.
Ayala AIC, Jiménez NN, Delgado EA, Alvarado RTR, Medrano JRM, García HMM. Análisis toxicológico de seis especies de hongos silvestres comestibles de la región del Salto, Pueblo Nuevo Durango. Vidsupra Vis Cient. 2015;7:6–10.
Zhang J, Liu H, Li S-J, Li J-Q, Wang Y, Li T. Arsenic in edible and medicinal mushrooms from Southwest China. Int J Med Mushrooms. 2015;17:601–605. PubMed
Dimitrova E, Yurukova L, Sameva E, Gyosheva M, Bakalova G, Fakirova V. Accumulation of arsenic in fruiting bodies of macromycetes. J Balk Ecol. 1999;2:81–89.
Braeuer S, Borovička J, Goessler W. A unique arsenic speciation profile in Elaphomyces spp. ("deer truffles")-trimethylarsine oxide and methylarsonous acid as significant arsenic compounds. Anal Bioanal Chem. 2018;410:2283–2290. PubMed PMC
Francesconi KA, Khokiattiwong S, Goessler W, Pedersen SN, Pavkov M. A new arsenobetaine from marine organisms identified by liquid chromatography–mass spectrometry. Chem Commun. 2000:1083–1084.
Wahlen R, McSheehy S, Scriver C, Mester Z. Arsenic speciation in marine certified reference materials Part 2. The quantification of water-soluble arsenic species by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2004;19:876–882.
Sloth JJ, Larsen EH, Julshamn K. Report on three aliphatic dimethylarsinoyl compounds as common minor constituents in marine samples. An investigation using high-performance liquid chromatography/inductively coupled plasma mass spectrometry and electrospray ionisation tandem mass spectrometry. Rapid Commun Mass Spectrom. 2005;19:227–235. PubMed
Hansen HR, Raab A, Feldmann J. New arsenosugar metabolite determined in urine by parallel use of HPLC-ICP-MS and HPLC-ESI-MS. J Anal At Spectrom. 2003;18:474–479.
McSheehy S, Guo X-M, Sturgeon RE, Mester Z. Photochemical alkylation of inorganic arsenic Part 2. Identification of aqueous phase organoarsenic species using multidimensional liquid chromatography and electrospray mass spectrometry. J Anal At Spectrom. 2005;20:709–716.
McShane WS. The Synthesis and Characterisation of Arsenocholine and Related Compounds. (Ph.D. thesis); 1982.
Luqmani YA, Sudlow G, Whittaker VP. Homocholine and acetylhomocholine: false transmitters in the cholinergic electromotor system of Torpedo. Neuroscience. 1980;5:153–160. PubMed
Ahmed IAM, Eltayeb ME, Mori N, Arima J, Tanaka H, Taniguchi T, Yamanaka N. Proteomic analysis of homocholine catabolic pathway in Pseudomonas sp. strain A9. Process Biochem. 2015;50:1735–1747.
Popowich A, Zhang Q, Le XC. Arsenobetaine. Nat Sci Rev. 2016 nww061.
Edmonds JS. Diastereoisomers of an ‘arsenomethionine’-based structure from Sargassum lacerifolium: the formation of the arsenic–carbon bond in arsenic-containing natural products. Bioorg Med Chem Lett. 2000;10:1105–1108. PubMed
Maher W, Foster S, Krikowa F. Arsenic species in Australian temperate marine food chains. Mar Freshw Res. 2009;60:885.
Mann P, Woodward H, Quastel J. Hepatic oxidation of choline and arsenocholine. Biochem J. 1938;32:1024–1032. PubMed PMC
Christakopoulos A, Norin H, Sandström M, Thor H, Moldeus P, Ryhage R. Cellular metabolism of arsenocholine. J Appl Toxicol. 1988;8:119–127. PubMed
Amayo KO, Raab A, Krupp EM, Feldmann J. Identification of arsenolipids and their degradation products in cod-liver oil. Talanta. 2014;118:217–223. PubMed
Kuehnelt D, Goessler W, Irgolic KJ. Arsenic compounds in terrestrial organisms II: arsenocholine in the mushroom Amanita muscaria. Appl Organomet Chem. 1997;11:459–470.
Borovička J, Braeuer S, Žigová A, Gryndler M, Dima B, Goessler W, Frøslev TG, Kameník J, Kärcher R. Resurrection of Cortinarius coalescens. Mycol Prog. 2017;16:927–939. PubMed PMC
Arsenobetaine amide: a novel arsenic species detected in several mushroom species