Arsenobetaine amide: a novel arsenic species detected in several mushroom species
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38227015
PubMed Central
PMC10861392
DOI
10.1007/s00216-024-05132-z
PII: 10.1007/s00216-024-05132-z
Knihovny.cz E-zdroje
- Klíčová slova
- Arsenic speciation, HPLC-ICPMS, HR ESI-MS, Mushrooms, Ramaria sanguinea, Trimethylarsonioacetamide,
- MeSH
- arsen * analýza MeSH
- arsenikové přípravky * analýza MeSH
- Basidiomycota * MeSH
- hmotnostní spektrometrie metody MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- arsen * MeSH
- arsenikové přípravky * MeSH
- arsenobetaine MeSH Prohlížeč
The total arsenic mass fraction as well as the arsenic speciation were studied in four different mushroom species with inductively coupled plasma mass spectrometry and high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry, respectively. Arsenic mass fractions detected in the mushrooms were covering a range from 0.3 to 22 mg As kg-1 dry mass. For the arsenic speciation, species like arsenobetaine, inorganic arsenic, or dimethylarsinic acid were found, which are commonly detected in mushrooms, but it was also proven that the recently discovered novel compound homoarsenocholine is present in Amanita muscaria and Ramaria sanguinea. Moreover, a previously unidentified arsenic species was isolated from Ramaria sanguinea and identified as trimethylarsonioacetamide, or in short: arsenobetaine amide. This new arsenical was synthesized and verified by spiking experiments to be present in all investigated mushroom samples. Arsenobetaine amide could be an important intermediate to further elucidate the biotransformation pathways of arsenic in the environment.
Institute of Chemistry Inorganic Chemistry University of Graz Universitaetsplatz 1 8010 Graz Austria
Institute of Geology of the Czech Academy of Sciences Rozvojová 269 16500 Prague 6 Czech Republic
Zobrazit více v PubMed
Baldrian P, Větrovský T, Lepinay C, Kohout P. High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Divers. 2022 doi: 10.1007/s13225-021-00472-y. DOI
Braeuer S, Goessler W. Arsenic species in mushrooms, with a focus on analytical methods for their determination - A critical review. Anal Chim Acta. 2019 doi: 10.1016/j.aca.2019.04.004. PubMed DOI
Nearing MM, Koch I, Reimer KJ. Arsenic speciation in edible mushrooms. Environ Sci Technol. 2014 doi: 10.1021/es5038468. PubMed DOI
Šlejkovec Z, Byrne AR, Stijve T, Goessler W, Irgolic KJ. Arsenic Compounds in Higher Fungi. Appl Organomet Chem. 1997 doi: 10.1002/(SICI)1099-0739(199708)11:8<673::AID-AOC620>3.0.CO;2-1. DOI
Slekovec M, Goessler W, Irgolic KJ. Inorganic and organic arsenic compounds in Slovenian mushrooms: comparison of arsenic-specific detectors for liquid chromatography. Chem Speciation Bioavailability. 1999 doi: 10.3184/095422999782775618. DOI
Llorente-Mirandes T, Barbero M, Rubio R, López-Sánchez JF. Occurrence of inorganic arsenic in edible Shiitake (Lentinula edodes) products. Food Chem. 2014 doi: 10.1016/j.foodchem.2014.02.081. PubMed DOI
Braeuer S, Borovička J, Goessler W. A unique arsenic speciation profile in Elaphomyces spp. (“deer truffles”)-trimethylarsine oxide and methylarsonous acid as significant arsenic compounds. Anal Bioanal Chem. 2018;410:2283–90. 10.1007/s00216-018-0903-3. PubMed PMC
Molin M, Ulven SM, Meltzer HM, Alexander J. Arsenic in the human food chain, biotransformation and toxicology–Review focusing on seafood arsenic. J Trace Elem Med Biol. 2015 doi: 10.1016/j.jtemb.2015.01.010. PubMed DOI
Kuehnelt D, Goessler W, Irgolic KJ. Arsenic Compounds in Terrestrial Organisms II: Arsenocholine in the Mushroom Amanita muscaria. Appl Organomet Chem 1997; 10.1002/(SICI)1099-0739(199706)11:6<459::AID-AOC583>3.0.CO;2-O
Braeuer S, Borovička J, Glasnov T, de la Cruz Guedes G, Jensen KB, Goessler W. Homoarsenocholine - A novel arsenic compound detected for the first time in nature. Talanta. 2018;188:107–110. doi: 10.1016/j.talanta.2018.05.065. PubMed DOI PMC
Šlejkovec Z, Byrne AR, Goessler W, Kuehnelt D, Irgolic KJ, Pohleven F. Methylation of arsenic in Pleurotus sp. and Agaricus placomyces. Acta Chim Slov. 1996;43:269–83.
Nearing MM, Koch I, Reimer KJ. Uptake and transformation of arsenic during the vegetative life stage of terrestrial fungi. Environ Pollut. 2015 doi: 10.1016/j.envpol.2014.12.006. PubMed DOI
Braeuer S, Borovička J, Glabonjat RA, Steiner L, Goessler W. Arsenocholine-O-sulfate: A novel compound as major arsenic species in the parasitic mushroom Tolypocladium ophioglossoides. Chemosphere. 2021 doi: 10.1016/j.chemosphere.2020.128886. PubMed DOI
Raab A, Kubachka K, Strohmaier M, Preihs M, Feldmann J. New arsenic compound identified in rice grain: dimethylarsonyldimethylarsinic acid. Environ Chem. 2022 doi: 10.1071/EN22063. DOI
Walenta M, Braeuer S, Goessler W. Arsenic speciation of commonly eaten mushrooms from central Europe. Environ Chem. 2023 doi: 10.1071/EN22069. DOI
McSheehy S, Guo X-M, Sturgeon RE, Mester Z. Photochemical alkylation of inorganic arsenic: part 2. Identification of aqueous phase organoarsenic species using multidimensional liquid chromatography and electrospray mass spectrometry. J Anal At Spectrom. 2005 doi: 10.1039/b503662c. DOI
Minhas R, Forsyth DS, Dawson B. Synthesis and characterization of arsenobetaine and arsenocholine derivatives. Appl Organomet Chem. 1998 doi: 10.1002/(SICI)1099-0739(199808/09)12:8/9<635::AID-AOC772>3.0.CO;2-J. DOI
Tabisz Ł, Pankiewicz R, Rozwadowski Z, Łęska B. Hybrid materials comprising trimethylglycinamide groups: immobilization consequences for anion binding affinities. Tetrahedron. 2015 doi: 10.1016/j.tet.2015.02.056. DOI
Popowich A, Zhang Q, Le XC. Arsenobetaine: the ongoing mystery. Natl Sci Rev. 2016 doi: 10.1093/nsr/nww061. DOI
Caumette G, Koch I, Reimer KJ. Arsenobetaine formation in plankton: a review of studies at the base of the aquatic food chain. J Environ Monit. 2012 doi: 10.1039/c2em30572k. PubMed DOI
Stiboller M, Raber G, Francesconi KA. Simultaneous determination of glycine betaine and arsenobetaine in biological samples by HPLC/ICPMS/ESMS and the application to some marine and freshwater fish samples. Microchem J. 2015 doi: 10.1016/j.microc.2015.04.022. DOI
Kidd MT, Ferket PR, Garlich JD. Nutritional and osmoregulatory functions of betaine. World’s Poul Sci J. 1997 doi: 10.1079/WPS19970013. DOI
Zhang W, Miao A-J, Wang N-X, Li C, Sha J, Jia J, Alessi DS, Yan B, Ok YS. Arsenic bioaccumulation and biotransformation in aquatic organisms. Environ Int. 2022 doi: 10.1016/j.envint.2022.107221. PubMed DOI
Rahman MA, Hassler C. Is arsenic biotransformation a detoxification mechanism for microorganisms? Aquat Toxicol. 2014 doi: 10.1016/j.aquatox.2013.11.009. PubMed DOI
Paul NP, Galván AE, Yoshinaga-Sakurai K, Rosen BP, Yoshinaga M. Arsenic in medicine: past, present and future. Biometals. 2023 doi: 10.1007/s10534-022-00371-y. PubMed DOI PMC
Lykknes A, Kvittingen L. Arsenic: Not So Evil After All? J Chem Educ. 2003 doi: 10.1021/ed080p497. DOI
Kuramata M, Sakakibara F, Kataoka R, Yamazaki K, Baba K, Ishizaka M, Hiradate S, Kamo T, Ishikawa S. Arsinothricin, a novel organoarsenic species produced by a rice rhizosphere bacterium. Environ Chem. 2016 doi: 10.1071/EN14247. DOI
Francesconi K, Kuehnelt D. Arsenic compounds in the environment. Environmental Chemistry of Arsenic. New York: Marcel Dekker Inc.; 2002.
Francesconi KA, Edmonds JS, Stick RV. Arsenic compounds from the kidney of the giant clam Tridacna maxima: isolation and identification of an arsenic-containing nucleoside. J Chem Soc Perkin Trans 1. 1992; 10.1039/P19920001349
Maher W, Foster S, Krikowa F. Arsenic species in Australian temperate marine food chains. Mar Freshwater Res. 2009 doi: 10.1071/MF08256. DOI