Diagnostic Value of Cerebrospinal Fluid Neurofilament Light Protein in Neurology: A Systematic Review and Meta-analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
MALASPINA/APR13/817-791
Motor Neurone Disease Association - United Kingdom
T32 AG023481
NIA NIH HHS - United States
K23 AG059888
NIA NIH HHS - United States
TURNER/OCT15/972-797
Motor Neurone Disease Association - United Kingdom
MR/M008592/1
Medical Research Council - United Kingdom
P01 AG019724
NIA NIH HHS - United States
TURNER/OCT18/989-797
Motor Neurone Disease Association - United Kingdom
PubMed
31206160
PubMed Central
PMC6580449
DOI
10.1001/jamaneurol.2019.1534
PII: 2735955
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
IMPORTANCE: Neurofilament light protein (NfL) is elevated in cerebrospinal fluid (CSF) of a number of neurological conditions compared with healthy controls (HC) and is a candidate biomarker for neuroaxonal damage. The influence of age and sex is largely unknown, and levels across neurological disorders have not been compared systematically to date. OBJECTIVES: To assess the associations of age, sex, and diagnosis with NfL in CSF (cNfL) and to evaluate its potential in discriminating clinically similar conditions. DATA SOURCES: PubMed was searched for studies published between January 1, 2006, and January 1, 2016, reporting cNfL levels (using the search terms neurofilament light and cerebrospinal fluid) in neurological or psychiatric conditions and/or in HC. STUDY SELECTION: Studies reporting NfL levels measured in lumbar CSF using a commercially available immunoassay, as well as age and sex. DATA EXTRACTION AND SYNTHESIS: Individual-level data were requested from study authors. Generalized linear mixed-effects models were used to estimate the fixed effects of age, sex, and diagnosis on log-transformed NfL levels, with cohort of origin modeled as a random intercept. MAIN OUTCOME AND MEASURE: The cNfL levels adjusted for age and sex across diagnoses. RESULTS: Data were collected for 10 059 individuals (mean [SD] age, 59.7 [18.8] years; 54.1% female). Thirty-five diagnoses were identified, including inflammatory diseases of the central nervous system (n = 2795), dementias and predementia stages (n = 4284), parkinsonian disorders (n = 984), and HC (n = 1332). The cNfL was elevated compared with HC in a majority of neurological conditions studied. Highest levels were observed in cognitively impaired HIV-positive individuals (iHIV), amyotrophic lateral sclerosis, frontotemporal dementia (FTD), and Huntington disease. In 33.3% of diagnoses, including HC, multiple sclerosis, Alzheimer disease (AD), and Parkinson disease (PD), cNfL was higher in men than women. The cNfL increased with age in HC and a majority of neurological conditions, although the association was strongest in HC. The cNfL overlapped in most clinically similar diagnoses except for FTD and iHIV, which segregated from other dementias, and PD, which segregated from atypical parkinsonian syndromes. CONCLUSIONS AND RELEVANCE: These data support the use of cNfL as a biomarker of neuroaxonal damage and indicate that age-specific and sex-specific (and in some cases disease-specific) reference values may be needed. The cNfL has potential to assist the differentiation of FTD from AD and PD from atypical parkinsonian syndromes.
1st Faculty of Medicine Institute of Medical Biochemistry Prague Czech Republic
Alzheimer Centre and Department of Neurology Erasmus Medical Centre Rotterdam the Netherlands
Barts Health NHS Trust Barts United Kingdom
Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
Dementia Research Centre UCL Institute of Neurology Queen Square London United Kingdom
Dementia Research Institute at UCL London United Kingdom
Department of Basic Medical Sciences Neurosciences and Sense Organs University of Bari Bari Italy
Department of Biomedical and Specialist Surgical Sciences University of Ferrara Ferrara Italy
Department of Biomedicine Aarhus University Aarhus Denmark
Department of Clinical Genetics VU University Medical Centre Amsterdam the Netherlands
Department of Clinical Immunology Copenhagen University Hospital Righospitalet Copenhagen Denmark
Department of Clinical Sciences Karolinska Institutet Danderyd Hospital Stockholm Sweden
Department of Endocrinology Sahlgrenska University Hospital Gothenburg Sweden
Department of Epidemiology and Biostatistics VU University Medical Centre Amsterdam the Netherlands
Department of Infectious Diseases Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
Department of Laboratory Medicine Radboud Alzheimer Centre Nijmegen the Netherlands
Department of Mathematics VU University Amsterdam the Netherlands
Department of Medicine University Hospital and University of Basel Basel Switzerland
Department of Molecular Neuroscience UCL Institute of Neurology Queen Square London United Kingdom
Department of Neurology China Medical University Hospital Taichung City Taiwan
Department of Neurology Copenhagen University Hospital Rigshospitalet Copenhagen Denmark
Department of Neurology Faculty of Medicine and Health Orebro University Hospital Orebro Sweden
Department of Neurology Karolinska University Hospital Stockholm Sweden
Department of Neurology Medical University of Graz Graz Austria
Department of Neuroscience Uppsala University Uppsala Sweden
Department of Neurosurgery Kuopio University Hospital Kuopio Finland
Department of Pharmacology and Clinical Neuroscience Umeå University Umeå Sweden
Department of Psychological Science and Neuroscience Program Belmont University Nashville Tennessee
Division of Infectious Diseases University of California San Diego
Evotec AG Manfred Eigen Campus Hamburg Germany
Immunology Department Ramon y Cajal University Hospital Madrid Spain
Institute of Cell and Molecular Medicine Barts United Kingdom
Institute of Clinical Medicine Neurosurgery University of Eastern Finland Kuopio
Laboratory Diagnostics Charles University and General University Hospital Prague Czech Republic
London School of Medicine and Dentistry Barts United Kingdom
Memory and Aging Center Department of Neurology University of California San Francisco
Multiple Sclerosis Unit Ramon y Cajal University Hospital Madrid Spain
National Institute of Mental Health Klecany Czech Republic
Neuroimmunology Unit Department of Clinical Neurosciences Karolinska Institutet Stockholm Sweden
North East London and Essex MND Care Centre Neuroscience and Trauma Centre Blizard United Kingdom
Nuffield Department of Clinical Neurosciences University of Oxford Oxford United Kingdom
Pia Fondazione Cardinale G Panico Tricase Lecce Italy
Puerto Rico OMICS Centre University of Puerto Rico Comprehensive Cancer Centre San Juan
San Camillo Forlanini Hospital Rome Italy
UCL Institute of Neurology Queen Square London United Kingdom
Wallenberg Center for Molecular Medicine Lund University Lund Sweden
Zobrazit více v PubMed
Rosengren LE, Karlsson JE, Karlsson JO, Persson LI, Wikkelsø C. Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J Neurochem. 1996;67(5):2013-2018. doi:10.1046/j.1471-4159.1996.67052013.x PubMed DOI
Khademi M, Dring AM, Gilthorpe JD, et al. . Intense inflammation and nerve damage in early multiple sclerosis subsides at older age: a reflection by cerebrospinal fluid biomarkers. PLoS One. 2013;8(5):e63172. doi:10.1371/journal.pone.0063172 PubMed DOI PMC
Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group . Preferred Reporting Items for Systematic Reviews and Meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264-269, W64. doi:10.7326/0003-4819-151-4-200908180-00135 PubMed DOI
Vandenbroucke JP, von Elm E, Altman DG, et al. ; STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Epidemiology 2007;18(6):805-835. Medline:18049195 doi:10.1097/EDE.0b013e3181577511 PubMed DOI
Whiting PF, Rutjes AW, Westwood ME, et al. ; QUADAS-2 Group . QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529-536. doi:10.7326/0003-4819-155-8-201110180-00009 PubMed DOI
Petzold A, Altintas A, Andreoni L, et al. . Neurofilament ELISA validation. J Immunol Methods. 2010;352(1-2):23-31. doi:10.1016/j.jim.2009.09.014 PubMed DOI
Teunissen CE, Khalil M. Neurofilaments as biomarkers in multiple sclerosis. Mult Scler. 2012;18(5):552-556. doi:10.1177/1352458512443092 PubMed DOI
Yilmaz A, Blennow K, Hagberg L, et al. . Neurofilament light chain protein as a marker of neuronal injury: review of its use in HIV-1 infection and reference values for HIV-negative controls. Expert Rev Mol Diagn. 2017;17(8):761-770. doi:10.1080/14737159.2017.1341313 PubMed DOI
McDonald WI, Compston A, Edan G, et al. . Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001;50(1):121-127. doi:10.1002/ana.1032 PubMed DOI
Polman CH, Reingold SC, Edan G, et al. . Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol. 2005;58(6):840-846. doi:10.1002/ana.20703 PubMed DOI
Polman CH, Reingold SC, Banwell B, et al. . Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald Criteria. Ann Neurol. 2011;69(2):292-302. doi:10.1002/ana.22366 PubMed DOI PMC
McKhann GM, Knopman DS, Chertkow H, et al. . The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263-269. doi:10.1016/j.jalz.2011.03.005 PubMed DOI PMC
Dubois B, Feldman HH, Jacova C, et al. . Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria [published correction appears in Lancet Neurol. 2014;13(8):757]. Lancet Neurol. 2014;13(6):614-629. doi:10.1016/S1474-4422(14)70090-0 PubMed DOI
Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55(3):181-184. doi:10.1136/jnnp.55.3.181 PubMed DOI PMC
Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol. 1999;56(1):33-39. doi:10.1001/archneur.56.1.33 PubMed DOI
Emre M, Aarsland D, Brown R, et al. . Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord. 2007;22(12):1689-1707. doi:10.1002/mds.21507 PubMed DOI
Litvan I, Agid Y, Jankovic J, et al. . Accuracy of clinical criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome). Neurology. 1996;46(4):922-930. doi:10.1212/WNL.46.4.922 PubMed DOI
Gilman S, Low PA, Quinn N, et al. . Consensus statement on the diagnosis of multiple system atrophy. J Neurol Sci. 1999;163(1):94-98. doi:10.1016/S0022-510X(98)00304-9 PubMed DOI
Lee SE, Rabinovici GD, Mayo MC, et al. . Clinicopathological correlations in corticobasal degeneration. Ann Neurol. 2011;70(2):327-340. doi:10.1002/ana.22424 PubMed DOI PMC
Mathew R, Bak TH, Hodges JR. Diagnostic criteria for corticobasal syndrome: a comparative study. J Neurol Neurosurg Psychiatry. 2012;83(4):405-410. doi:10.1136/jnnp-2011-300875 PubMed DOI
McKeith IG, Boeve BF, Dickson DW, et al. . Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88-100. doi:10.1212/WNL.0000000000004058 PubMed DOI PMC
Neary D, Snowden JS, Gustafson L, et al. . Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51(6):1546-1554. doi:10.1212/WNL.51.6.1546 PubMed DOI
The Lund and Manchester Groups Clinical and neuropathological criteria for frontotemporal dementia. J Neurol Neurosurg Psychiatry. 1994;57(4):416-418. doi:10.1136/jnnp.57.4.416 PubMed DOI PMC
Ludolph A, Drory V, Hardiman O, et al. ; WFN Research Group on ALS/MND . A revision of the El Escorial criteria: 2015. Amyotroph Lateral Scler Frontotemporal Degener. 2015;16(5-6):291-292. doi:10.3109/21678421.2015.1049183 PubMed DOI
Erkinjuntti T, Haltia M, Palo J, Sulkava R, Paetau A. Accuracy of the clinical diagnosis of vascular dementia: a prospective clinical and post-mortem neuropathological study. J Neurol Neurosurg Psychiatry. 1988;51(8):1037-1044. doi:10.1136/jnnp.51.8.1037 PubMed DOI PMC
Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005;57(3)(suppl):S4-S16. PubMed
Gonzalez R, Heaton RK, Moore DJ, et al. ; HIV Neurobehavioral Research Center Group . Computerized reaction time battery versus a traditional neuropsychological battery: detecting HIV-related impairments. J Int Neuropsychol Soc. 2003;9(1):64-71. doi:10.1017/S1355617703910071 PubMed DOI
Anckarsäter R, Anckarsäter H, Bromander S, Blennow K, Wass C, Zetterberg H. Non-neurological surgery and cerebrospinal fluid biomarkers for neuronal and astroglial integrity. J Neural Transm (Vienna). 2014;121(6):649-653. doi:10.1007/s00702-013-1156-0 PubMed DOI
Axelsson M, Malmeström C, Gunnarsson M, et al. . Immunosuppressive therapy reduces axonal damage in progressive multiple sclerosis. Mult Scler. 2014;20(1):43-50. doi:10.1177/1352458513490544 PubMed DOI
Bäckström DC, Eriksson Domellöf M, Linder J, et al. . Cerebrospinal fluid patterns and the risk of future dementia in early, incident Parkinson disease. JAMA Neurol. 2015;72(10):1175-1182. doi:10.1001/jamaneurol.2015.1449 PubMed DOI
Bjerke M, Zetterberg H, Edman Å, Blennow K, Wallin A, Andreasson U. Cerebrospinal fluid matrix metalloproteinases and tissue inhibitor of metalloproteinases in combination with subcortical and cortical biomarkers in vascular dementia and Alzheimer’s disease. J Alzheimers Dis. 2011;27(3):665-676. doi:10.3233/JAD-2011-110566 PubMed DOI
Bjerke M, Jonsson M, Nordlund A, et al. . Cerebrovascular biomarker profile is related to white matter disease and ventricular dilation in a LADIS substudy. Dement Geriatr Cogn Dis Extra. 2014;4(3):385-394. doi:10.1159/000366119 PubMed DOI PMC
Jonsson M, Zetterberg H, Rolstad S, et al. . Low cerebrospinal fluid sulfatide predicts progression of white matter lesions: the LADIS study. Dement Geriatr Cogn Disord. 2012;34(1):61-67. doi:10.1159/000341576 PubMed DOI
Bruno D, Pomara N, Nierenberg J, et al. . Levels of cerebrospinal fluid neurofilament light protein in healthy elderly vary as a function of TOMM40 variants. Exp Gerontol. 2012;47(5):347-352. doi:10.1016/j.exger.2011.09.008 PubMed DOI PMC
Burman J, Zetterberg H, Fransson M, Loskog AS, Raininko R, Fagius J. Assessing tissue damage in multiple sclerosis: a biomarker approach. Acta Neurol Scand. 2014;130(2):81-89. doi:10.1111/ane.12239 PubMed DOI
Fialová L, Bartos A, Švarcová J, Zimova D, Kotoucova J. Serum and cerebrospinal fluid heavy neurofilaments and antibodies against them in early multiple sclerosis. J Neuroimmunol. 2013;259(1-2):81-87. doi:10.1016/j.jneuroim.2013.03.009 PubMed DOI
Fialová L, Bartos A, Švarcová J. Neurofilaments and tau proteins in cerebrospinal fluid and serum in dementias and neuroinflammation. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2017;161(3):286-295. doi:10.5507/bp.2017.038 PubMed DOI
Gunnarsson M, Malmeström C, Axelsson M, et al. . Axonal damage in relapsing multiple sclerosis is markedly reduced by natalizumab. Ann Neurol. 2011;69(1):83-89. doi:10.1002/ana.22247 PubMed DOI
Hall S, Öhrfelt A, Constantinescu R, et al. . Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch Neurol. 2012;69(11):1445-1452. doi:10.1001/archneurol.2012.1654 PubMed DOI
Hall S, Surova Y, Öhrfelt A, Zetterberg H, Lindqvist D, Hansson O. CSF biomarkers and clinical progression of Parkinson disease. Neurology. 2015;84(1):57-63. doi:10.1212/WNL.0000000000001098 PubMed DOI PMC
Herbert MK, Aerts MB, Beenes M, et al. . CSF neurofilament light chain but not FLT3 ligand discriminates parkinsonian disorders. Front Neurol. 2015;6(May):91. doi:10.3389/fneur.2015.00091 PubMed DOI PMC
Hjalmarsson C, Bjerke M, Andersson B, et al. . Neuronal and glia-related biomarkers in cerebrospinal fluid of patients with acute ischemic stroke. J Cent Nerv Syst Dis. 2014;6:51-58. doi:10.4137/JCNSD.S13821 PubMed DOI PMC
Jakobsson J, Bjerke M, Ekman CJ, et al. . Elevated concentrations of neurofilament light chain in the cerebrospinal fluid of bipolar disorder patients. Neuropsychopharmacology. 2014;39(10):2349-2356. doi:10.1038/npp.2014.81 PubMed DOI PMC
Rolstad S, Jakobsson J, Sellgren C, et al. . Cognitive performance and cerebrospinal fluid biomarkers of neurodegeneration: a study of patients with bipolar disorder and healthy controls. PLoS One. 2015;10(5):e0127100. doi:10.1371/journal.pone.0127100 PubMed DOI PMC
Jeppsson A, Zetterberg H, Blennow K, Wikkelsø C. Idiopathic normal-pressure hydrocephalus: pathophysiology and diagnosis by CSF biomarkers. Neurology. 2013;80(15):1385-1392. doi:10.1212/WNL.0b013e31828c2fda PubMed DOI
Jessen Krut J, Mellberg T, Price RW, et al. . Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients. PLoS One. 2014;9(2):e88591. doi:10.1371/journal.pone.0088591 PubMed DOI PMC
Aeinehband S, Lindblom RPF, Al Nimer F, et al. . Complement component C3 and butyrylcholinesterase activity are associated with neurodegeneration and clinical disability in multiple sclerosis. PLoS One. 2015;10(4):e0122048. doi:10.1371/journal.pone.0122048 PubMed DOI PMC
Khalil M, Enzinger C, Langkammer C, et al. . CSF neurofilament and N-acetylaspartate related brain changes in clinically isolated syndrome. Mult Scler. 2013;19(4):436-442. doi:10.1177/1352458512458010 PubMed DOI PMC
Kuhle J, Plattner K, Bestwick JP, et al. . A comparative study of CSF neurofilament light and heavy chain protein in MS. Mult Scler. 2013;19(12):1597-1603. doi:10.1177/1352458513482374 PubMed DOI
Kuhle J, Malmeström C, Axelsson M, et al. . Neurofilament light and heavy subunits compared as therapeutic biomarkers in multiple sclerosis. Acta Neurol Scand. 2013;128(6):e33-e36. doi:10.1111/ane.12151 PubMed DOI
Kuhle J, Disanto G, Lorscheider J, et al. . Fingolimod and CSF neurofilament light chain levels in relapsing-remitting multiple sclerosis. Neurology. 2015;84(16):1639-1643. doi:10.1212/WNL.0000000000001491 PubMed DOI PMC
Magdalinou NK, Paterson RW, Schott JM, et al. . A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J Neurol Neurosurg Psychiatry. 2015;86(11):1240-1247. doi:10.1136/jnnp-2014-309562 PubMed DOI PMC
Martínez MAM, Olsson B, Bau L, et al. . Glial and neuronal markers in cerebrospinal fluid predict progression in multiple sclerosis. Mult Scler. 2015;21(5):550-561. doi:10.1177/1352458514549397 PubMed DOI PMC
Meeter LH, Dopper EG, Jiskoot LC, et al. . Neurofilament light chain: a biomarker for genetic frontotemporal dementia. Ann Clin Transl Neurol. 2016;3(8):623-636. doi:10.1002/acn3.325 PubMed DOI PMC
Menke RA, Gray E, Lu CH, et al. . CSF neurofilament light chain reflects corticospinal tract degeneration in ALS. Ann Clin Transl Neurol. 2015;2(7):748-755. doi:10.1002/acn3.212 PubMed DOI PMC
Lu CH, Macdonald-Wallis C, Gray E, et al. . Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis [published correction appears in Neurology. 2015;85(10):921]. Neurology. 2015;84(22):2247-2257. doi:10.1212/WNL.0000000000001642 PubMed DOI PMC
Modvig S, Degn M, Horwitz H, et al. . Relationship between cerebrospinal fluid biomarkers for inflammation, demyelination and neurodegeneration in acute optic neuritis. PLoS One. 2013;8(10):e77163. doi:10.1371/journal.pone.0077163 PubMed DOI PMC
Modvig S, Degn M, Sander B, et al. . Cerebrospinal fluid neurofilament light chain levels predict visual outcome after optic neuritis. Mult Scler. 2016;22(5):590-598. doi:10.1177/1352458515599074 PubMed DOI
Modvig S, Degn M, Roed H, et al. . Cerebrospinal fluid levels of chitinase 3-like 1 and neurofilament light chain predict multiple sclerosis development and disability after optic neuritis. Mult Scler. 2015;21(14):1761-1770. doi:10.1177/1352458515574148 PubMed DOI
Paterson RW, Toombs J, Slattery CF, et al. . Dissecting IWG-2 typical and atypical Alzheimer’s disease: insights from cerebrospinal fluid analysis. J Neurol. 2015;262(12):2722-2730. doi:10.1007/s00415-015-7904-3 PubMed DOI
Pérez-Santiago J, Schrier RD, de Oliveira MF, et al. . Cell-free mitochondrial DNA in CSF is associated with early viral rebound, inflammation, and severity of neurocognitive deficits in HIV infection. J Neurovirol. 2016;22(2):191-200. doi:10.1007/s13365-015-0384-5 PubMed DOI PMC
Pijnenburg YA, Verwey NA, van der Flier WM, Scheltens P, Teunissen CE. Discriminative and prognostic potential of cerebrospinal fluid phosphoTau/tau ratio and neurofilaments for frontotemporal dementia subtypes. Alzheimers Dement (Amst). 2015;1(4):505-512. doi:10.1016/j.dadm.2015.11.001 PubMed DOI PMC
Pyykkö OT, Lumela M, Rummukainen J, et al. . Cerebrospinal fluid biomarker and brain biopsy findings in idiopathic normal pressure hydrocephalus. PLoS One. 2014;9(3):e91974. doi:10.1371/journal.pone.0091974 PubMed DOI PMC
Ragnarsson O, Berglund P, Eder DN, et al. . Neurodegenerative and inflammatory biomarkers in cerebrospinal fluid in patients with Cushing’s syndrome in remission. Eur J Endocrinol. 2013;169(2):211-215. doi:10.1530/EJE-13-0205 PubMed DOI
Romme Christensen J, Ratzer R, Börnsen L, et al. . Natalizumab in progressive MS: results of an open-label, phase 2A, proof-of-concept trial. Neurology. 2014;82(17):1499-1507. doi:10.1212/WNL.0000000000000361 PubMed DOI
Rosén C, Rosén H, Andreasson U, et al. . Cerebrospinal fluid biomarkers in cardiac arrest survivors. Resuscitation. 2014;85(2):227-232. doi:10.1016/j.resuscitation.2013.10.032 PubMed DOI
Sandberg L, Biström M, Salzer J, Vågberg M, Svenningsson A, Sundström P. Vitamin D and axonal injury in multiple sclerosis. Mult Scler. 2016;22(8):1027-1031. doi:10.1177/1352458515606986 PubMed DOI
Scherling CS, Hall T, Berisha F, et al. . Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration. Ann Neurol. 2014;75(1):116-126. doi:10.1002/ana.24052 PubMed DOI PMC
Skillbäck T, Farahmand B, Bartlett JW, et al. . CSF neurofilament light differs in neurodegenerative diseases and predicts severity and survival. Neurology. 2014;83(21):1945-1953. doi:10.1212/WNL.0000000000001015 PubMed DOI
Stilund M, Gjelstrup MC, Petersen T, Møller HJ, Rasmussen PV, Christensen T. Biomarkers of inflammation and axonal degeneration/damage in patients with newly diagnosed multiple sclerosis: contributions of the soluble CD163 CSF/serum ratio to a biomarker panel. PLoS One. 2015;10(4):e0119681. doi:10.1371/journal.pone.0119681 PubMed DOI PMC
Tortelli R, Copetti M, Ruggieri M, et al. . Cerebrospinal fluid neurofilament light chain levels: marker of progression to generalized amyotrophic lateral sclerosis. Eur J Neurol. 2015;22(1):215-218. doi:10.1111/ene.12421 PubMed DOI
Tortelli R, Ruggieri M, Cortese R, et al. . Elevated cerebrospinal fluid neurofilament light levels in patients with amyotrophic lateral sclerosis: a possible marker of disease severity and progression. Eur J Neurol. 2012;19(12):1561-1567. doi:10.1111/j.1468-1331.2012.03777.x PubMed DOI
Tortorella C, Direnzo V, Taurisano P, et al. . Cerebrospinal fluid neurofilament tracks fMRI correlates of attention at the first attack of multiple sclerosis. Mult Scler. 2015;21(4):396-401. doi:10.1177/1352458514546789 PubMed DOI
Trentini A, Comabella M, Tintoré M, et al. . N-acetylaspartate and neurofilaments as biomarkers of axonal damage in patients with progressive forms of multiple sclerosis. J Neurol. 2014;261(12):2338-2343. doi:10.1007/s00415-014-7507-4 PubMed DOI
Vågberg M, Norgren N, Dring A, et al. . Levels and age dependency of neurofilament light and glial fibrillary acidic protein in healthy individuals and their relation to the brain parenchymal fraction. PLoS One. 2015;10(8):e0135886. doi:10.1371/journal.pone.0135886 PubMed DOI PMC
Villar LM, Picón C, Costa-Frossard L, et al. . Cerebrospinal fluid immunological biomarkers associated with axonal damage in multiple sclerosis. Eur J Neurol. 2015;22(8):1169-1175. doi:10.1111/ene.12579 PubMed DOI
Wild EJ, Boggio R, Langbehn D, et al. . Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington’s disease patients. J Clin Invest. 2015;125(5):1979-1986. doi:10.1172/JCI80743 PubMed DOI PMC
Zetterberg H, Skillbäck T, Mattsson N, et al. ; Alzheimer’s Disease Neuroimaging Initiative . Association of cerebrospinal fluid neurofilament light concentration with Alzheimer disease progression. JAMA Neurol. 2016;73(1):60-67. doi:10.1001/jamaneurol.2015.3037 PubMed DOI PMC
Pakkenberg B, Gundersen HJ. Neocortical neuron number in humans: effect of sex and age. J Comp Neurol. 1997;384(2):312-320. doi:10.1002/(SICI)1096-9861(19970728)384:2<312::AID-CNE10>3.0.CO;2-K PubMed DOI
Cohen JA, Reingold SC, Polman CH, Wolinsky JS; International Advisory Committee on Clinical Trials in Multiple Sclerosis . Disability outcome measures in multiple sclerosis clinical trials: current status and future prospects. Lancet Neurol. 2012;11(5):467-476. doi:10.1016/S1474-4422(12)70059-5 PubMed DOI
Stadelmann C, Wegner C, Brück W. Inflammation, demyelination, and degeneration - recent insights from MS pathology. Biochim Biophys Acta. 2011;1812(2):275-282. doi:10.1016/j.bbadis.2010.07.007 PubMed DOI
Gaiottino J, Norgren N, Dobson R, et al. . Increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS One. 2013;8(9):e75091. doi:10.1371/journal.pone.0075091 PubMed DOI PMC
Tortorella C, Direnzo V, Ruggieri M, et al. . Cerebrospinal fluid neurofilament light levels mark grey matter volume in clinically isolated syndrome suggestive of multiple sclerosis [published correction appears in Mult Scler. 2019;25(2):302]. Mult Scler J. 2018;24(8):1039-1045. PubMed
De Stefano N, Matthews PM, Filippi M, et al. . Evidence of early cortical atrophy in MS: relevance to white matter changes and disability. Neurology. 2003;60(7):1157-1162. doi:10.1212/01.WNL.0000055926.69643.03 PubMed DOI
Malmeström C, Haghighi S, Rosengren L, Andersen O, Lycke J. Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology. 2003;61(12):1720-1725. doi:10.1212/01.WNL.0000098880.19793.B6 PubMed DOI
Norgren N, Sundström P, Svenningsson A, Rosengren L, Stigbrand T, Gunnarsson M. Neurofilament and glial fibrillary acidic protein in multiple sclerosis. Neurology. 2004;63(9):1586-1590. doi:10.1212/01.WNL.0000142988.49341.D1 PubMed DOI
Giovannoni G, Nath A. After the storm: neurofilament levels as a surrogate endpoint for neuroaxonal damage. Neurology. 2011;76(14):1200-1201. doi:10.1212/WNL.0b013e3182143345 PubMed DOI
Alcolea D, Vilaplana E, Suárez-Calvet M, et al. . CSF sAPPβ, YKL-40, and neurofilament light in frontotemporal lobar degeneration. Neurology. 2017;89(2):178-188. doi:10.1212/WNL.0000000000004088 PubMed DOI
Reijn TS, Abdo WF, Schelhaas HJ, Verbeek MM. CSF neurofilament protein analysis in the differential diagnosis of ALS. J Neurol. 2009;256(4):615-619. doi:10.1007/s00415-009-0131-z PubMed DOI
Hu X, Yang Y, Gong D. Cerebrospinal fluid levels of neurofilament light chain in multiple system atrophy relative to Parkinson’s disease: a meta-analysis. Neurol Sci. 2017;38(3):407-414. doi:10.1007/s10072-016-2783-7 PubMed DOI
Soylu-Kucharz R, Sandelius Å, Sjögren M, et al. . Neurofilament light protein in CSF and blood is associated with neurodegeneration and disease severity in Huntington’s disease R6/2 mice. Sci Rep. 2017;7(1):14114. doi:10.1038/s41598-017-14179-1 PubMed DOI PMC
Bergman J, Dring A, Zetterberg H, et al. . Neurofilament light in CSF and serum is a sensitive marker for axonal white matter injury in MS. Neurol Neuroimmunol Neuroinflamm. 2016;3(5):e271. doi:10.1212/NXI.0000000000000271 PubMed DOI PMC
Teunissen CE, Elias N, Koel-Simmelink MJ, et al. . Novel diagnostic cerebrospinal fluid biomarkers for pathologic subtypes of frontotemporal dementia identified by proteomics. Alzheimers Dement (Amst). 2016;2:86-94. doi:10.1016/j.dadm.2015.12.004 PubMed DOI PMC
Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain. 2002;125(pt 4):861-870. doi:10.1093/brain/awf080 PubMed DOI
Plassman BL, Khachaturian AS, Townsend JJ, et al. . Comparison of clinical and neuropathologic diagnoses of Alzheimer’s disease in 3 epidemiologic samples. Alzheimers Dement. 2006;2(1):2-11. doi:10.1016/j.jalz.2005.11.001 PubMed DOI
Visser PJ, Vos S, van Rossum I, Scheltens P. Comparison of International Working Group criteria and National Institute on Aging–Alzheimer’s Association criteria for Alzheimer’s disease. Alzheimers Dement. 2012;8(6):560-563. doi:10.1016/j.jalz.2011.10.008 PubMed DOI
Pohjasvaara T, Mäntylä R, Ylikoski R, Kaste M, Erkinjuntti T; National Institute of Neurological Disorders and Stroke–Association Internationale pour la Recherche et l’Enseignement en Neurosciences. Comparison of different clinical criteria (DSM-III, ADDTC, ICD-10, NINDS-AIREN, DSM-IV) for the diagnosis of vascular dementia. Stroke. 2000;31(12):2952-2957. doi:10.1161/01.STR.31.12.2952 PubMed DOI
Alzheimer disease seen through the lens of sex and gender
The potential of serum neurofilament as biomarker for multiple sclerosis