Tick salivary gland transcriptomics and proteomics
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
33135186
DOI
10.1111/pim.12807
Knihovny.cz E-zdroje
- Klíčová slova
- proteome, salivary gland, sialome, tick, transcriptome,
- MeSH
- genom fyziologie MeSH
- interakce hostitele a patogenu MeSH
- klíšťata genetika fyziologie MeSH
- lidé MeSH
- proteomika * MeSH
- slinné žlázy fyziologie MeSH
- transkriptom fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
'Omics' technologies have facilitated the identification of hundreds to thousands of tick molecules that mediate tick feeding and play a role in the transmission of tick-borne diseases. Deep sequencing methodologies have played a key role in this knowledge accumulation, profoundly facilitating the study of the biology of disease vectors lacking reference genomes. For example, the nucleotide sequences of the entire set of tick salivary effectors, the so-called tick 'sialome', now contain at least one order of magnitude more transcript sequences compared to similar projects based on Sanger sequencing. Tick feeding is a complex and dynamic process, and while the dynamic 'sialome' is thought to mediate tick feeding success, exactly how transcriptome dynamics relate to tick-host-pathogen interactions is still largely unknown. The identification and, importantly, the functional analysis of the tick 'sialome' is expected to shed light on this 'black box'. This information will be crucial for developing strategies to block pathogen transmission, not only for anti-tick vaccine development but also the discovery and development of new, pharmacologically active compounds for human diseases.
Zobrazit více v PubMed
Rochlin I, Toledo A. Emerging tick-borne pathogens of public health importance: a mini-review. J Med Microbiol. 2020;69:781-791.
Jaime Betancur Hurtado O, Giraldo-Ríos C. Economic and health impact of the ticks in production animals. Hurtado OJB, Giraldo-Ríos C, eds. In: Ticks and tick-borne pathogens. London: IntechOpen. 2019. .
Guglielmone AA, Robbins RG, Apanaskevich DA, et al. The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world. Zootaxa. 2010;2528:1-28.
Chmelar J, Calvo E, Pedra JHF, et al. Tick salivary secretion as a source of antihemostatics. J Proteomics. 2012;75:3842-3854.
Kazimírová M, Štibrániová I. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol. 2013;3:43.
Liu XY, Bonnet SI. Hard Tick factors implicated in pathogen transmission. PLoS Negl Trop Dis. 2014;8:e2566.
Kovář L. Tick saliva in anti-tick immunity and pathogen transmission. Folia Microbio. 2004;49:327-336.
Bowman AS, Sauer JR. Tick salivary glands: function, physiology and future. Parasitology. 2005;129:S67.
Bowman AS, Ball A, Sauer JR. Tick salivary glands: the physiology of tick water balance and their role in pathogen trafficking and transmission. In: Bowman AS, Nuttall PA, eds. Ticks. Cambridge: Cambridge University Press, 73-91.
Valenzuela JG, Francischetti IMB, Pham VM, et al. Exploring the sialome of the tick Ixodes scapularis. J Exp Biol. 2002;205:2843-2864.
Mans BJ, de Castro MH, Pienaar R, et al. Ancestral reconstruction of tick lineages. Ticks Tick Borne Dis. 2016;7:509-535.
Hovius JWR, Levi M, Fikrig E. Salivating for Knowledge: potential pharmacological agents in tick saliva. PLoS Medicine. 2008;5:e43.
Chmelař J, Kotál J, Kopecký J, et al. All for one and one for all on the tick-host battlefield. Trends Parasitol. 2016;32:368-377.
Wikel S. Ticks and tick-borne pathogens at the cutaneous interface: Host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Front Microbiol. 2013;4:1-10.
Wikel SK, Bergman D. Tick-host immunology: significant advances and challenging opportunities. Parasitology Today. 1997;13:383-389.
Brossard M, Wikel SK. Tick immunobiology. Parasitology. 2004;129(Suppl):S161-S176.
Francischetti IMB, Sa-Nunes A, Mans BJ, et al. The role of saliva in tick feeding. Front Biosci. 2009;14:2051-2088.
Ribeiro JMC, Alarcon-Chaidez F, Ivo IM, et al. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem Mol Biol. 2006;36:111-129.
Perner J, Kropáčková S, Kopáček P, et al. Sialome diversity of ticks revealed by RNAseq of single tick salivary glands. PLoS Negl Trop Dis. 2018;12:e0006410.
Barrero RA, Guerrero FD, Black M, et al. Gene-enriched draft genome of the cattle tick Rhipicephalus microplus: assembly by the hybrid pacific biosciences /Illumina approach enabled analysis of the highly repetitive genome. Int J Parasitol. Epub ahead of print. 2017;47(9):569-583. https://doi.org/10.1016/j.ijpara.2017.03.007
Guerrero FD, Bendele KG, Ghaffari N, et al. The Pacific biosciences de novo assembled genome dataset from a parthenogenetic New Zealand wild population of the longhorned tick, Haemaphysalis longicornis Neumann, 1901. Data Br. 2019;27:104602.
Pagel Van Zee J, Geraci NS, Guerrero FD, et al. Tick genomics: the Ixodes genome project and beyond. Int J Parasitol. 2007;37:1297-1305.
Geraci NS, Spencer Johnston J, Paul Robinson J, et al. Variation in genome size of argasid and ixodid ticks. Insect Biochem Mol Biol. 2007;37:399-408.
Gulia-Nuss M, Nuss AB, Meyer JM, et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat Commun. 2016;7:10507.
van Dijk EL, Jaszczyszyn Y, Naquin D, et al. The third revolution in sequencing technology. Trends Genet. 2018;34:666-681.
Xiao T, Zhou W. The third generation sequencing: the advanced approach to genetic diseases. Transl Pediatr. 2020;9:163-173.
Heather JM, Chain B. The sequence of sequencers: the history of sequencing DNA. Genomics. 2016;107:1-8.
Francischetti IMB, Anderson JM, Manoukis N, et al. An insight into the sialotranscriptome and proteome of the coarse bontlegged tick. Hyalomma marginatum rufipes. J Proteomics. 2011;74:2892-2908.
Mudenda L, Pierlé SA, Turse JE, et al. Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva. Int J Parasitol. 2014;44:1029-1037.
Bensaoud C, Aounallah H, Sciani JM, et al. Proteomic informed by transcriptomic for salivary glands components of the camel tick Hyalomma dromedarii. BMC Genom. 2019;20:675.
Chmelař J, Kotál J, Karim S, et al. Sialomes and Mialomes: a systems-biology view of tick tissues and tick-host interactions. Trends Parasitol. 2016;32:242-254.
Ribeiro JMC, Francischetti IMB. Role of arthropod saliva in blood feeding: Sialome and Post-Sialome perspectives. Annu Rev Entomol. 2003;48:73-88.
Gibson AK, Smith Z, Fuqua C, et al. Why so many unknown genes? Partitioning orphans from a representative transcriptome of the lone star tick Amblyomma americanum. BMC Genom. 2013;14:135.
Ribeiro JMC, Mans BJ. TickSialoFam (TSFam): a database that helps to classify tick salivary proteins, a review on tick salivary protein function and evolution, with considerations on the tick sialome switching phenomenon. Front Cell Infect Microbiol. 2020;10:374.
Vechtova P, Fussy Z, Cegan R, et al. Catalogue of stage-specific transcripts in Ixodes ricinus and their potential functions during the tick life-cycle. Parasites & vectors. 2020;13:311.
Nene V, Lee D, Kang’a S, et al. Genes transcribed in the salivary glands of female Rhipicephalus appendiculatus ticks infected with Theileria parva. Insect Biochem Mol Biol. 2004;34:1117-1128.
Cotté V, Sabatier L, Schnell G, et al. Differential expression of Ixodes ricinus salivary gland proteins in the presence of the Borrelia burgdorferi sensu lato complex. J Proteomics. 2014;96:29-43.
Liu XY, de la Fuente J, Cote M, et al. IrSPI, a tick serine protease inhibitor involved in tick feeding and Bartonella henselae Infection. PLoS Negl Trop Dis. 2014;8:e2993.
Ayllón N, Villar M, Galindo RC, et al. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS Genet. 2015;11:1-29.
Antunes S, Couto J, Ferrolho J, et al. Rhipicephalus bursa Sialotranscriptomic response to blood feeding and Babesia ovis infection: identification of candidate protective antigens. Front Cell Infect Microbiol. 2018;8:1-17.
Couto J, Villar M, Mateos-Hernández L, et al. Quantitative proteomics identifies metabolic pathways affected by babesia infection and blood feeding in the Sialoproteome of the Vector Rhipicephalus bursa. Vaccines. 2020;8:91.
Martins LA, Malossi CD, de Galletti MFB, et al. The transcriptome of the salivary glands of amblyomma aureolatum reveals the antimicrobial peptide microplusin as an important factor for the tick protection against rickettsia rickettsii infection. Front Physiol; 2019;10:529.
Antunes S, Couto J, Ferrolho J, et al. Transcriptome and proteome response of rhipicephalus annulatus tick vector to babesia bigemina infection. Front Physiol. 2019;10:318.
Mans BJ, Andersen JF, Francischetti IMB, et al. Comparative sialomics between hard and soft ticks: implications for the evolution of blood-feeding behavior. Insect Biochem Mol Biol. 2008;38:42-58.
Chmelař J, Anderson JM, Mu J, et al. Insight into the sialome of the castor bean tick. Ixodes ricinus. BMC Genomics. 2008;9:233.
Kotsyfakis M, Schwarz A, Erhart J, et al. Tissue- and time-dependent transcription in Ixodes ricinus salivary glands and midguts when blood feeding on the vertebrate host. Sci Rep. 2015;5:1-10.
Kotál J, Langhansová H, Lieskovská J, et al. Modulation of host immunity by tick saliva. J Proteomics. 2015;128:58-68.
Valdés JJ, Schwarz A, Cabeza de Vaca I, et al. Tryptogalinin is a tick Kunitz serine protease inhibitor with a unique intrinsic disorder. PLoS One. 2013;8:e62562.
Islam MK, Tsuji N, Miyoshi T, et al. The Kunitz-Like modulatory protein haemangin is vital for hard tick blood-feeding success. PLoS Pathog. 2009;5:e1000497.
Mulenga A, Sugino M, Nakajim M, et al. Tick-Encoded serine proteinase inhibitors (serpins); potential target antigens for tick vaccine development. J Vet Med Sci. 2001;63:1063-1069.
Prevot PP, Couvreur B, Denis V, et al. Protective immunity against Ixodes ricinus induced by a salivary serpin. Vaccine. 2007;25:3284-3292.
Kanost MR. Serine proteinase inhibitors in arthropod immunity. Dev Comp Immunol. 1999;23(4-5):291-301. https://doi.org/10.1016/S0145-305X(99)00012-9.
Paesen GC, Adams PL, Nuttall PA, et al. Tick histamine-binding proteins: lipocalins with a second binding cavity. Biochim Biophys Acta - Protein Struct Mol Enzymol. 2000;1482:92-101.
Sangamnatdej S, Paesen GC, Slovak M, et al. A high affinity serotonin- and histamine-binding lipocalin from tick saliva. Insect Mol Biol. 2002;11:79-86.
Paesen GC, Adams PL, Harlos K, et al. Tick histamine-binding proteins: isolation, cloning, and three- dimensional structure. Mol Cell. 1999;3:661-671.
Mulenga A, Blandon M, Khumthong R. The molecular basis of the Amblyomma americanum tick attachment phase. Exp Appl Acarol. 2007;41:267-287.
Cabezas-Cruz A, Alberdi P, Valdés JJ, et al. Anaplasma phagocytophilum infection subverts carbohydrate metabolic pathways in the tick vector, Ixodes scapularis. Front Cell Infect Microbiol. 2017;7:23.
Kim TK, Tirloni L, Pinto AFM, et al. Time-resolved proteomic profile of Amblyomma americanum tick saliva during feeding. PLoS Negl Trop Dis. 2020;14:e0007758.
Jeyaprakash A, Hoy MA. First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny. Exp Appl Acarol. 2009;47:1-18.
Klompen JSH, Black WC, Keirans JE, et al. Evolution of ticks. Annu Rev Entomol. 1996;41:141-161.
Frith MC, Wilming LG, Forrest A, et al. Pseudo-messenger RNA: phantoms of the transcriptome. PLoS Genet. 2006;2:504-514.
Mans BJ, Featherston J, de Castro MH, et al. Gene duplication and protein evolution in tick-host interactions. Front Cell Infect Microbiol. 2017;7:413. https://doi.org/10.3389/fcimb.2017.00413
Kocan KM, Blouin E, De La Fuente J. RNA interference in ticks. J Vis Exp. 2011;2474(47):1-5.
Sun D, Guo Z, Liu Y, et al. Progress and prospects of CRISPR/Cas systems in insects and other arthropods. Front Physiol. 2017;8:608.
Zhang P, Wu W, Chen Q, et al. Non-Coding RNAs and their integrated networks. J Integr Bioinform. 2019;16:20190027.
Hackenberg M, Langenberger D, Schwarz A, et al. In silico target network analysis of de novo-discovered, tick saliva-specific microRNAs reveals important combinatorial effects in their interference with vertebrate host physiology. RNA. 2017;23:1259-1269.
Wang F, Gong H, Zhang H, et al. Lipopolysaccharide-induced differential expression of miRNAs in male and female Rhipicephalus haemaphysaloides ticks. PLoS One. 2015;10:e0139241.
Luo J, Liu GY, Chen Z, et al. Identification and characterization of microRNAs by deep-sequencing in Hyalomma anatolicum (Acari: Ixodidae) ticks. Gene. 2015;564:125-133.
Barrero RA, Keeble-Gagnère G, Zhang B, et al. Evolutionary conserved microRNAs are ubiquitously expressed compared to tick-specific miRNAs in the cattle tick Rhipicephalus (Boophilus) microplus. BMC Genomics. 2011;12(1):328.
Zhou J, Zhou Y, Cao J, et al. Distinctive microRNA profiles in the salivary glands of Haemaphysalis longicornis related to tick blood-feeding. Exp Appl Acarol. 2013;59:339-349.
Bensaoud C, Hackenberg M, Kotsyfakis M. Noncoding RNAs in parasite-vector-host interactions. Trends Parasitol. 2019;35(9):715-724.
Chaavez ASO, O'Neal AJ, Santambrogio L, Kotsyfakis M, Pedra JHF. Message in a vesicle - trans-kingdom intercommunication at the vector-host interface. J Cell Sci. 2019;132(6):jcs224212.
Li C, Chen Y. Small and long non-coding RNAs: novel targets in perspective cancer therapy. Curr Genomics. 2015;16:319-326.
Choudhuri S. Small noncoding RNAs: biogenesis, function, and emerging significance in toxicology. J Biochem Mol Toxicol. 2010;24:195-216.
O'Brien J, Hayder H, Zayed Y, et al. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in Endocrinology. 2018;9:402.
Trzybulska D, Vergadi E, Tsatsanis C. miRNA and other non-coding RNAs as promising diagnostic markers. EJIFCC. 2018;29:221-226.
Paraskevopoulou MD, Hatzigeorgiou AG. Analyzing MiRNA-LncRNA interactions. In: Feng Y, Zhang L, eds. Methods in molecular biology. 1402. New York: Humana Press Inc.; 2016:271-286.
Franco-Zorrilla JM, Valli A, Todesco M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet. 2007;39:1033-1037.
Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147:358-369.
Poliseno L, Salmena L, Zhang J, et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465:1033-1038.
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384-388.
de Castro MH, de Klerk D, Pienaar R, et al. De novo assembly and annotation of the salivary gland transcriptome of Rhipicephalus appendiculatus male and female ticks during blood feeding. Ticks Tick Borne Dis. 2016;7:536-548.
Yang C, Zhou M, Xie H, et al. LncADeep performance on full-length transcripts. Nat Mach Intell. 2020;1-2. https://doi.org/10.1038/s42256-019-0108-2
Steen NA, Barker SC, Alewood PF. Proteins in the saliva of the Ixodida (ticks): pharmacological features and biological significance. Toxicon. 2006;47:1-20.
Fontaine A, Diouf I, Bakkali N, et al. Implication of haematophagous arthropod salivary proteins in host-vector interactions. Parasit Vectors. 2011;4:187.
Brossard M, Wikel SK. Tick immunobiology. Bowman AS, Nuttall PA, eds. In: Ticks. Cambridge: Cambridge University Press; 186-204.
Štibrániová I, Bartíková P, Holíková V, et al. Deciphering biological processes at the tick-host interface opens new strategies for treatment of human diseases. Front Physiol. 2019;10:1-21.
Jia N, Wang J, Shi W, et al. Large-scale comparative analyses of tick genomes elucidate their genetic diversity and vector capacities. Cell. 2020;182:328-1340.e13.
Nene V, Lee D, Quackenbush J, et al. AvGI, an index of genes transcribed in the salivary glands of the ixodid tick Amblyomma variegatum. Int J Parasitol. 2002;32:1447-1456.
De Miranda Santos IKF, Valenzuela JG, Ribeiro JMC, et al. Gene discovery in Boophilus microplus, the cattle tick: the transcriptomes of ovaries, salivary glands, and hemocytes. Ann N Y Acad Sci. 2004;1026:242-246.
Francischetti IMB, My Pham V, Mans BJ, et al. The transcriptome of the salivary glands of the female western black-legged tick Ixodes pacificus (Acari: Ixodidae). Insect Biochem Mol Biol. 2005;35:1142-1161.
Alarcon-Chaidez FJ, Sun J, Wikel SK. Transcriptome analysis of the salivary glands of Dermacentor andersoni Stiles (Acari: Ixodidae). Insect Biochem Mol Biol. 2007;37:48-71.
Aljamali MN, Hern L, Kupfer D, et al. Transcriptome analysis of the salivary glands of the female tick Amblyomma americanum (Acari: Ixodidae). Insect Mol Biol. 2009;18:129-154.
Xiang F, Zhang J, Zhou Y, et al. Proteomic analysis of proteins in the salivary glands of the fed and unfed female tick Rhipicephalus haemaphysaloides. Agric Sci China. 2009;8:121-127.
Anatriello E, Riberiro J, de Miranda-Santos IIKF, et al. An insight into the sialotranscriptome of the brown dog tick, Rhipicephalus sanguineus. BMC Genomics. 2010;11:450.
Ribeiro JMC, Anderson JM, Manoukis NC, et al. A further insight into the sialome of the tropical bont tick, Amblyomma variegatum. BMC Genomics. 2011;12:136.
Karim S, Singh P, Ribeiro JMC. A deep insight into the Sialotranscriptome of the Gulf Coast Tick, Amblyomma maculatum. PLoS One. 2011;6:e28525.
Oliveira CJ, Anatriello E, de Miranda-Santos IK, et al. Proteome of Rhipicephalus sanguineus tick saliva induced by the secretagogues pilocarpine and dopamine. Ticks Tick Borne Dis. 2013;4:469-477.
Schwarz A, von Reumont BM, Erhart J, et al. De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. FASEB J. 2013;27:4745-4756.
Radulović ŽM, Kim TK, Porter LM, et al. A 24-48 h fed Amblyomma americanum tick saliva immuno-proteome. BMC Genom. 2014;15:518.
Garcia G, Gardinassi L, Ribeiro J, et al. The sialotranscriptome of Amblyomma triste, Amblyomma parvum and Amblyomma cajennense ticks, uncovered by 454-based RNA-seq. Parasit Vectors. 2014;7:430.
Tirloni L, Reck J, Terra RMS, et al. Proteomic analysis of cattle tick Rhipicephalus (Boophilus) microplus saliva: a comparison between partially and fully engorged females. PLoS One. 2014;9(4):e94831.
Tirloni L, Islam MS, Kim TK, et al. Saliva from nymph and adult females of Haemaphysalis longicornis: a proteomic study. Parasit Vectors. 2015;8:338.
Karim S, Ribeiro JMC. An insight into the Sialome of the Lone Star Tick, Amblyomma americanum, with a Glimpse on its time dependent gene expression. PLoS One. 2015;10:e0131292.
Tan AWL, Francischetti IMB, Slovak M, et al. Sexual differences in the sialomes of the zebra tick, Rhipicephalus pulchellus. J Proteomics. 2015;117:120-144.
Xu X-L, Cheng T-Y, Yang H, et al. De novo sequencing, assembly and analysis of salivary gland transcriptome of Haemaphysalis flava and identification of sialoprotein genes. Infect Genet Evol. 2015;32:135-142.
Lewis LA, Radulović ŽM, Kim TK, et al. Identification of 24h Ixodes scapularis immunogenic tick saliva proteins. Ticks Tick Borne Dis. 2015;6:424-434.
Kim TK, Tirloni L, Pinto AFM, et al. Ixodes scapularis tick saliva proteins sequentially secreted every 24 h during blood feeding. PLoS Negl Trop Dis. 2016;10:1-35.
Esteves E, Maruyama SR, Kawahara R, et al. Analysis of the salivary gland transcriptome of unfed and partially fed Amblyomma sculptum ticks and descriptive proteome of the saliva. Front Cell Infect Microbiol. 2017;7:476.
Tirloni L, Kim TK, Pinto AFM, et al. Tick-host range adaptation: changes in protein profiles in unfed adult Ixodes scapularis and Amblyomma americanum Saliva stimulated to feed on different hosts. Front Cell Infect Microbiol. 2017;7:517. https://doi.org/10.3389/fcimb.2017.00517
de Castro MH, de Klerk D, Pienaar R, et al. Sialotranscriptomics of Rhipicephalus zambeziensis reveals intricate expression profiles of secretory proteins and suggests tight temporal transcriptional regulation during blood-feeding. Parasit Vectors. 2017;10:384.
Ribeiro JMC, Slovák M, Francischetti IMB. An insight into the sialome of Hyalomma excavatum. Ticks Tick Borne Dis. 2017;8:201-207.
Rodriguez-Valle M, Moolhuijzen P, Barrero RA, et al. Transcriptome and toxin family analysis of the paralysis tick. Ixodes holocyclus. Int J Parasitol. 2018;48:71-82.
Bensaoud C, Nishiyama MY, Ben Hamda C, et al. De novo assembly and annotation of Hyalomma dromedarii tick (Acari: Ixodidae) sialotranscriptome with regard to gender differences in gene expression. Parasit Vectors. 2018;11:314.
Ren S, Zhang B, Xue X, et al. Salivary gland proteome analysis of developing adult female Haemaphysalis longicornis ticks: molecular motor and TCA cycle-related proteins play an important role throughout development. Parasit Vectors. 2019;12:613.
Feng L-L, Liu L, Cheng T-Y. Proteomic analysis of saliva from partially and fully engorged adult female Rhipicephalus microplus (Acari: Ixodidae). Exp Appl Acarol. 2019;78:443-460.
Wang H, Zhang X, Wang X, et al. Comprehensive analysis of the global protein changes that occur during salivary gland degeneration in female Ixodid Ticks Haemaphysalis longicornis. Front Physiol. 2019;9:1943. https://doi.org/10.3389/fphys.2018.01943
Garcia GR, Ribeiro JM, Maruyama SR, et al. A transcriptome and proteome of the tick Rhipicephalus microplus shaped by the genetic composition of its hosts and developmental stage. Sci Rep. 2020;10:12857.
Tirloni L, Lu S, Calvo E, et al. Integrated analysis of sialotranscriptome and sialoproteome of the brown dog tick Rhipicephalus sanguineus (s.l.): Insights into gene expression during blood feeding. J Proteomics. 2020;229:103899.
Editorial: Special Issue on the "Molecular Biology of Disease Vectors"