A unique arsenic speciation profile in Elaphomyces spp. ("deer truffles")-trimethylarsine oxide and methylarsonous acid as significant arsenic compounds
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
I 2352
Austrian Science Fund FWF - Austria
GF16-34839L
Grantová Agentura České Republiky
I 2352-B21
Austrian Science Fund
PubMed
29430602
PubMed Central
PMC5849658
DOI
10.1007/s00216-018-0903-3
PII: 10.1007/s00216-018-0903-3
Knihovny.cz E-zdroje
- Klíčová slova
- Arsenic speciation, Deer truffles, Elaphomyces, Fungi, Methylarsonous acid, Trimethylarsine oxide,
- MeSH
- arsenikové přípravky analýza izolace a purifikace MeSH
- Eurotiales chemie MeSH
- hmotnostní spektrometrie metody MeSH
- monitorování životního prostředí metody MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- arsenikové přípravky MeSH
- monomethylarsonic acid MeSH Prohlížeč
- trimethylarsine oxide MeSH Prohlížeč
Arsenic and its species were investigated for the first time in nine collections of Elaphomyces spp. ("deer truffles") from the Czech Republic with inductively coupled plasma mass spectrometry (ICPMS) and high-performance liquid chromatography coupled to ICPMS. The total arsenic concentrations ranged from 12 to 42 mg kg-1 dry mass in samples of E. asperulus and from 120 to 660 mg kg-1 dry mass in E. granulatus and E. muricatus. These concentrations are remarkably high for terrestrial organisms and demonstrate the arsenic-accumulating ability of these fungi. The dominating arsenic species in all samples was methylarsonic acid which accounted for more than 30% of the extractable arsenic. Arsenobetaine, dimethylarsinic acid, and inorganic arsenic were present as well, but only at trace concentrations. Surprisingly, we found high amounts of trimethylarsine oxide in all samples (0.32-28% of the extractable arsenic). Even more remarkable was that all but two samples contained significant amounts of the highly toxic trivalent arsenic compound methylarsonous acid (0.08-0.73% of the extractable arsenic). This is the first report of the occurrence of trimethylarsine oxide and methylarsonous acid at significant concentrations in a terrestrial organism. Our findings point out that there is still a lot to be understood about the biotransformation pathways of arsenic in the terrestrial environment. Graphical abstract Trimethylarsine oxide and methylarsonous acid in "deer truffles".
The Czech Academy of Sciences Institute of Geology Rozvojová 269 16500 Prague 6 Czech Republic
The Czech Academy of Sciences Nuclear Physics Institute Hlavní 130 25068 Husinec Řež Czech Republic
Zobrazit více v PubMed
Smedley P, Kinniburgh D. A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem. 2002; 10.1016/S0883-2927(02)00018-5.
Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, et al. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect. 2013; 10.1289/ehp.1205875. PubMed PMC
Sun J, Ma L, Yang Z, Lee H, Wang L. Speciation and determination of bioavailable arsenic species in soil samples by one-step solvent extraction and high-performance liquid chromatography with inductively coupled plasma mass spectrometry. J Sep Sci. 2015; 10.1002/jssc.201401221. PubMed
Huang J-H, Matzner E. Mobile arsenic species in unpolluted and polluted soils. Sci Total Environ. 2007; 10.1016/j.scitotenv.2007.01.059. PubMed
Tremlová J, Sehnal M, Száková J, Goessler W, Steiner O, Najmanová J, et al. A profile of arsenic species in different vegetables growing in arsenic-contaminated soils. Arch Agron Soil Sci. 2016; 10.1080/03650340.2016.1242721.
Geiszinger A, Goessler W, Kosmus W. Organoarsenic compounds in plants and soil on top of an ore vein. Appl Organomet Chem. 2002; 10.1002/aoc.294.
Ruiz-Chancho MJ, López-Sánchez JF, Schmeisser E, Goessler W, Francesconi KA, Rubio R. Arsenic speciation in plants growing in arsenic-contaminated sites. Chemosphere. 2008; 10.1016/j.chemosphere.2007.11.054. PubMed
Ruiz-Chancho MJ, López-Sánchez JF, Rubio R. Occurrence of methylated arsenic species in parts of plants growing in polluted soils. Int J Environ Anal Chem. 2011; 10.1080/03067310903243944.
Vahter M. Mechanisms of arsenic biotransformation. Toxicology. 2002; 10.1016/S0300-483X(02)00285-8. PubMed
Watanabe T, Hirano S. Metabolism of arsenic and its toxicological relevance. Arch Toxicol. 2013; 10.1007/s00204-012-0904-5. PubMed
Aposhian HV, Gurzau ES, Le XC, Gurzau A, Healy SM, Lu X, et al. Occurrence of monomethylarsonous acid in urine of humans exposed to inorganic arsenic. Chem Res Toxicol. 2000; 10.1021/tx000114o. PubMed
Száková J, Tlustoš P, Goessler W, Pavlíková D, Schmeisser E. Response of pepper plants (Capsicum annum L.) on soil amendment by inorganic and organic compounds of arsenic. Arch Environ Contam Toxicol. 2007; 10.1007/s00244-005-0250-1. PubMed
Yathavakilla SKV, Fricke M, Creed PA, Heitkemper DT, Shockey NV, Schwegel C, et al. Arsenic speciation and identification of monomethylarsonous acid and monomethylthioarsonic acid in a complex matrix. Anal Chem. 2008; 10.1021/ac0714462. PubMed
Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Vasken AH. Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes. Toxicol Appl Pharm. 2000; 10.1006/taap.1999.8872. PubMed
Taylor V, Goodale B, Raab A, Schwerdtle T, Reimer KJ, Conklin S, et al. Human exposure to organic arsenic species from seafood. Sci Total Environ. 2017; 10.1016/j.scitotenv.2016.12.113. PubMed PMC
Pereira ÉR, Kopp JF, Raab A, Krupp EM, Menoyo JDC, Carasek E, et al. Arsenic containing medium and long chain fatty acids in marine fish oil identified as degradation products using reversed-phase HPLC-ICP-MS/ESI-MS. J. Anal. A. Spectrom. 2016; 10.1039/C6JA00162A.
Falandysz J, Rizal LM. Arsenic and its compounds in mushrooms: a review. J Environ Sci Health Pt C-Environ Carcinog Ecotoxicol Rev. 2016; 10.1080/10590501.2016.1235935. PubMed
Braeuer S, Goessler W, Kameník J, Konvalinková T, Žigová A, Borovička J. Arsenic hyperaccumulation and speciation in the edible ink stain bolete (Cyanoboletus pulverulentus). Food Chem. 2018; 10.1016/j.foodchem.2017.09.038. PubMed PMC
Byrne AR, Šlejkovec Z, Stijve T, Fay L, Goessler W, Gailer J, et al. Arsenobetaine and other arsenic species in mushrooms. Appl Organomet Chem. 1995; 10.1002/aoc.590090403.
Borovička J, Braeuer S, Žigová A, Gryndler M, Dima B, Goessler W, et al. Resurrection of Cortinarius coalescens: taxonomy, chemistry, and ecology. Mycol Prog. 2017; 10.1007/s11557-017-1331-z. PubMed PMC
Šlejkovec Z, Byrne AR, Stijve T, Goessler W, Irgolic KJ. Arsenic compounds in higher fungi. Appl Organomet Chem. 1997;11(8):673–682. doi: 10.1002/(SICI)1099-0739(199708)11:8<673::AID-AOC620>3.0.CO;2-1. DOI
Nearing MM, Koch I, Reimer KJ. Arsenic speciation in edible mushrooms. Environ Sci Technol. 2014; 10.1021/es5038468. PubMed
Orczán AK, Vetter J, Merényi Z, Bonifert E, Bratek Z. Mineral composition of hypogeous fungi in Hungary. J Appl Bot Food Qual. 2012;85(1):100–104.
Ljubojevic S, Marceta D, Stupar V. Habitat conditions and usability of the hog truffle (Choiromyces meandriformis Vitt.) found in Bosnia and Herzegovina. In: Book of proceedings: Fifth International Scientific Agricultural Symposium" Agrosym 2014". University of East Sarajevo, Faculty of Agriculture; 2014. pp 109–117.
Paz A, Bellanger J-M, Lavoise C, Molia A, Ławrynowicz M, Larsson E, et al. The genus Elaphomyces (Ascomycota, Eurotiales): a ribosomal DNA-based phylogeny and revised systematics of European ‘deer truffles’. Persoonia. 2017; 10.3767/003158517X697309. PubMed PMC
Scheer J, Findenig S, Goessler W, Francesconi KA, Howard B, Umans JG, et al. Arsenic species and selected metals in human urine: validation of HPLC/ICPMS and ICPMS procedures for a long-term population-based epidemiological study. Anal Methods. 2012; 10.1039/c2ay05638k. PubMed PMC
Goessler W, Pavkov M. Accurate quantification and transformation of arsenic compounds during wet ashing with nitric acid and microwave assisted heating. Analyst. 2003; 10.1039/b300303p. PubMed
Merijanian A, Zingaro RA. Arsine oxides. Inorg Chem. 1966;5(2):187–191. doi: 10.1021/ic50036a005. DOI
Irgolic KJ, Junk T, Kos C, McShane WS, Pappalardo GC. Preparation of trimethyl-2-hydroxyethylarsonium (arsenocholine) compounds. Appl Organomet Chem. 1987; 10.1002/aoc.590010504.
McShane WS. The synthesis and characterisation of arsenocholine and related compounds. PhD Thesis, Texas A & M University, College Station; 1982.
Gong Z, Lu X, Cullen WR, Chris LX. Unstable trivalent arsenic metabolites, monomethylarsonous acid and dimethylarsinous acid. J Anal A Spectrom. 2001; 10.1039/b105834g.
Francesconi KA, Kuehnelt D. Determination of arsenic species: a critical review of methods and applications, 2000-2003. Analyst. 2004; 10.1039/b401321m. PubMed
Challenger F. Biological methylation. Chem Rev. 1945; 10.1021/cr60115a003.
Cullen WR. Chemical mechanism of arsenic biomethylation. Chem Res Toxicol. 2014; 10.1021/tx400441h. PubMed
Arsenobetaine amide: a novel arsenic species detected in several mushroom species
Homoarsenocholine - A novel arsenic compound detected for the first time in nature