Corrosion Properties of Mn-Based Alloys Obtained by Aluminothermic Reduction of Deep-Sea Nodules
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
20-15217S
Grantová Agentura České Republiky
PubMed
34576432
PubMed Central
PMC8470249
DOI
10.3390/ma14185211
PII: ma14185211
Knihovny.cz E-resources
- Keywords
- Mn–Al alloy, aluminothermic reduction, deep-sea nodules, electrochemical measurement, intergranular corrosion,
- Publication type
- Journal Article MeSH
Deep-sea manganese nodules are polymetallic oxidic ores that can be found on a seabed. Aluminothermic reduction is one of the possibilities of manganese nodules processing. This process obtains the polymetallic alloy with a high content of Mn and a varying content of Al, depending on the ratio between aluminum and nodules. The corrosion behaviors of three experimental Mn-based alloys produced by aluminothermic reduction with a content of Mn > 50 wt % were studied. The electrochemical testing in potable water and model seawater was used to explain the corrosion mechanism of Mn-based alloys. The results showed that the corrosion rate of experimental Mn-based alloy decreases with the increase in aluminum content in both potable water and model seawater. It was observed that the uniform corrosion of experimental Mn-based alloys is changed with an increase in aluminum content in alloy to localized corrosion, which was caused by microcells in an environment of model seawater. In contrast, the formation of a semi-protective layer of corrosion products was observed on the surface of Mn-based alloys with a higher content of aluminum in potable water. Moreover, the pitting corrosion of tested Mn-based alloys was observed neither in potable water nor in model seawater.
See more in PubMed
Sen P.K. Metals and materials from deep sea nodules: An outlook for the future. Int. Mater. Rev. 2010;55:364–391. doi: 10.1179/095066010X12777205875714. DOI
Lenoble J.P. Polymetallic nodules resources and reserves in the North Pacific From the data collected by AFERNOD. Ocean Manag. 1981;7:9–24. doi: 10.1016/0302-184X(81)90003-2. DOI
Haynes B.W., Law S.L., Barron D.C., Kramer G.W., Madea R., Magyar M.J. Pacific manganese nodules: Characterization and processing. Bull./US Dept. Inter. Bur. Mines. 1985;679:1–43.
Georgiu D., Papangelakis V.G. Behaviour of cobalt during sulphuric acid pressure leaching of a limonic laterite. Hydrometallurgy. 2009;100:35–40. doi: 10.1016/j.hydromet.2009.09.011. DOI
Randhawa N.S., Hait J., Jana R.K. A brief overview on manganese nodules processing signifying the detail inthe Indian context highlighting the international scenario. Hydrometallurgy. 2016;165:166–181. doi: 10.1016/j.hydromet.2015.09.013. DOI
Hein J., Mizell K., Koschinsky A., Conrad T.A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based deposits. Ore Geol. Rev. 2013;51:1–14. doi: 10.1016/j.oregeorev.2012.12.001. DOI
Cardwell P.H. Extractive metallurgy of ocean nodules. Min. Cong. J. 1973:38–43.
Novak P., Nguyen H.V., Šulcova L., Kopeček J., Laufek F., Tsepeleva A., Dvorak P., Michalcova A. Structure and properties of alloys obtained by aluminothermic reduction of deep-sea nodules. Materials. 2020;14:561. doi: 10.3390/ma14030561. PubMed DOI PMC
Kanungo S.B., Jena P.K. Studies on the dissolution of metal values in manganes nodules of Indian-ocean origin in dilute hydrochloric acid. Hydrometalurgy. 1988;21:23–39. doi: 10.1016/0304-386X(88)90014-X. DOI
Senanazake G. Acid leaching of metals from deep/sea manganese nodules—A critical review of fundamental applications. Miner. Eng. 2011;24:1379–1396. doi: 10.1016/j.mineng.2011.06.003. DOI
Kaar S., Krizan D., Schneider R., Béal C., Sommitsch C. Effect of Manganese on the Structure-Properties Relationship of Cold Rolled AHSS Treated by a Quenching and Partitioning Process. Metals. 2019;9:1122. doi: 10.3390/met9101122. DOI
Kim M.J., Kim J.G. Effect of Manganese on the Corrosion Behavior of Low Carbon Steel in 10 wt.% Sulfuric Acid. Int. J. Electrochem. Sci. 2015;10:6872–6885.
Michna Š., Lukáč I., Otčenášek V., Kořený R., Drápala J., Schneider H., Miškufová A. Encyklopedie Hliníku. 1st ed. Adin; Prešov, Slovakia: 2005.
Pettersen T., Li Y., Furu T., Marthinsen K. Effect of changing homogenization treatment on the particle structure in Mn-containing aluminium alloys. Mater. Sci. Forum. 2007;558–559:301–306. doi: 10.4028/www.scientific.net/MSF.558-559.301. DOI
Zamin M. The role of Mn in the corrosion behavior of AlMn alloys. NACE. 1981;37:627–632. doi: 10.5006/1.3577549. DOI
Birbilis N., Hinton B. Fundamentals of Aluminium Metallurgy: Production, Processing and Applications. 1st ed. Woodhead Publishing; Sawston, UK: 2011.
Zhang J.F., Zhang W., Yan C.W., Du K.Q., Wang F.H. Corrosion behaviors of Zn/Al-Mn alloy composite coatings deposited on magnesium alloy AZ31B (Mg-Al-Zn) Electrochim. Acta. 2009;55:560–571. doi: 10.1016/j.electacta.2009.09.026. DOI
Moffat T.P., Staffrd R., Hall D.E. Pitting corrosion of electrodeposited aluminium-manganese alloy. J. Electrochem. Soc. 1993;140:2779–2786. doi: 10.1149/1.2220910. DOI
Chen J., Xiao J., Poplawsky J., Michel M.F., Deng Ch Cai W. The origin of passivity in aluminium-manganese solid solutions. Corros. Sci. 2020;173:108749. doi: 10.1016/j.corsci.2020.108749. DOI
Mraied H., Cai W., Sagüés A.A. Corrosion resistance of Al and Al-Mn thin films. Thin Solid Films. 2016;615:391–401. doi: 10.1016/j.tsf.2016.07.057. DOI
Shechtman D., Blech I., Gratias D., Cahn J.W. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry. Phys. Rev. Lett. 1984;53:1951–1954. doi: 10.1103/PhysRevLett.53.1951. DOI
Vdovin K., Pesin A., Feoktistov N., Gorlenko D. Surface Wear in Hadfield Steel Castings DOPED with Nitrided Vanadium. Metals. 2018;8:845. doi: 10.3390/met8100845. DOI
Allende-Seco R., Artigas A., Bruna H., Carvajal L., Monsalve A., Sklate-Boja M.F. Hardening by Transformation and Cold Working in a Hadfield Steel Cone Crusher Liner. Metals. 2021;11:961. doi: 10.3390/met11060961. DOI
Ahamed Khan R.A., Ghomashchi R., Xie Z., Chen L. Ferromagnetic Shape Memory Heusler Materials: Synthesis, Microstructure Characterization and Magnetostructural Properties. Materials. 2018;11:988. doi: 10.3390/ma11060988. PubMed DOI PMC
Gavrikov I., Seredina M., Zheleznyy M., Shchetinin I., Karpenkov D., Bogach A., Chatterjee R., Khovaylo V. Magnetic and transport properties of Mn2FeAl. J. Magn. Magn. Mater. 2019;478:55–58. doi: 10.1016/j.jmmm.2019.01.088. DOI
Dash S., Lukoyanov A.V., Mishra D., Rasi U.M., Gangineni R.B., Vasundhara M., Patra A.K. Structural stability and magnetic properties of Mn2FeAl alloy with a β-Mn structure. J. Magn. Magn. Mater. 2020;513:167205. doi: 10.1016/j.jmmm.2020.167205. DOI
Jones D.A. Principles and Prevention of Corrosion. 2nd ed. Prentice Hall; Hoboken, NJ, USA: 1996.
Pourbaix M. Atlas D’équlibres Électrochimiques. 1st ed. Gauthier-Villars; Paris, France: 1963.
Julien C.M., Massot M., Poinsignon C. Lattice vibrations of manganese oxides Part I. Periodic structures. Spectrochim. Acta Part A. 2004;60:689–700. doi: 10.1016/S1386-1425(03)00279-8. PubMed DOI
Possibilities of a Direct Synthesis of Aluminum Alloys with Elements from Deep-Sea Nodules