Absorption and Distribution of Toltrazuril and Toltrazuril Sulfone in Plasma, Intestinal Tissues and Content of Piglets after Oral or Intramuscular Administration

. 2021 Sep 16 ; 26 (18) : . [epub] 20210916

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34577103

Piglet coccidiosis due to Cystoisospora suis is a major cause of diarrhea and poor growth worldwide. It can effectively be controlled by application of toltrazuril (TZ), and oral formulations have been licensed for many years. Recently, the first parenteral formulation containing TZ in combination with iron (gleptoferron) was registered in the EU for the prevention of coccidiosis and iron deficiency anemia, conditions in suckling piglets requiring routine preventive measures. This study evaluated the absorption and distribution of TZ and its main metabolite, toltrazuril sulfone (TZ-SO2), in blood and intestinal tissues after single oral (20 mg/kg) or single intramuscular (45 mg/piglet) application of TZ. Fifty-six piglets were randomly allocated to the two treatment groups. Animals were sacrificed 1-, 5-, 13-, and 24-days post-treatment and TZ and TZ-SO2 levels were determined in blood, jejunal tissue, ileal tissue, and mixed jejunal and ileal content (IC) by high performance liquid chromatography (HPLC). Intramuscular application resulted in significantly higher and more sustained concentrations of both compounds in plasma, intestinal tissue, and IC. Higher concentrations after oral dosing were only observed one day after application of TZ in jejunum and IC. Toltrazuril was quickly metabolized to TZ-SO2 with maximum concentrations on day 13 for both applications. Remarkably, TZ and TZ-SO2 accumulated in the jejunum, the primary predilection site of C. suis, independently of the administration route, which is key to their antiparasitic effect.

Zobrazit více v PubMed

Joachim A., Shrestha A. Coccidiosis of Pigs. In: Dubey J.P., editor. Coccidiosis in Livestock, Companion Animals and Humans. CRC Press, Taylor and Francis; Boca Raton, FL, USA: 2020. pp. 125–145.

Meyer C., Joachim A., Daugschies A. Occurrence of Isospora suis in larger piglet production units and on specialized piglet rearing farms. Vet. Parasitol. 1999;82:277–284. doi: 10.1016/S0304-4017(99)00027-8. PubMed DOI

Maes D., Vyt P., Rabaeys P., Gevaert D. Effects of toltrazuril on the growth of piglets in herds without clinical isosporosis. Vet. J. 2007;173:197–199. doi: 10.1016/j.tvjl.2005.07.002. PubMed DOI

Niestrath M., Takla M., Joachim A., Daugschies A. The role of Isospora suis as a pathogen in conventional piglet production in Germany. J. Vet. Med. B. 2002;49:176–180. doi: 10.1046/j.1439-0450.2002.00459.x. PubMed DOI PMC

Shrestha A., Metzler-Zebeli B.U., Karembe H., Sperling D., Koger S., Joachim A. Shifts in the fecal microbial community of Cystoisospora suis infected piglets in response to toltrazuril. Front. Microbiol. 2020;19:983. doi: 10.3389/fmicb.2020.00983. PubMed DOI PMC

Noack S., Chapman H.D., Selzer P.M. Anticoccidial drugs of the livestock industry. Parasitol. Res. 2019;118:2009–2026. doi: 10.1007/s00436-019-06343-5. PubMed DOI PMC

The European Medicines Agency for the Evaluation of Medicinal Products (EMA) Committee for Veterinary Medicinal Products. Toltrazuril (Extension to Pigs), Summary Report (3) 2000. [(accessed on 19 August 2021)]. Available online: https://www.ema.europa.eu/en/documents/mrl-report/toltrazuril-extension-pigs-summary-report-3-committee-veterinary-medicinal-products_en.pdf.

Ryley J., Wilson R., Betts M. Anticoccidial activity of an azauracil derivative. Parasitology. 1974;68:69–79. doi: 10.1017/S0031182000045388. PubMed DOI

Partsch G., Eberl R. 6-azauridine, an inhibitor of the purine salvage pathway. In: Müller M.M., Kaiser E., Seegmiller J.E., editors. Purine Metabolism in Man—II. Advances in Experimental Medicine and Biology. Volume 76B. Springer; Boston, MA, USA: 1977. pp. 170–175. PubMed DOI

Mehlhorn H., Schmahl G., Haberkorn A. Toltrazuril effective against a broad spectrum of protozoan parasites. Parasitol. Res. 1988;75:64–66. doi: 10.1007/BF00931192. PubMed DOI

Bach U., Kalthoff V., Mundt H.C., Popp A., Rinke M., Daugschies A., Lüttge B. Parasitological and morphological findings in porcine isosporosis after treatment with symmetrical triazintriones. Parasitol. Res. 2003;91:27–33. doi: 10.1007/s00436-003-0828-3. PubMed DOI

Mundt H.C., Mundt-Wüstenberg S., Daugschies A., Joachim A. Efficacy of various anticoccidials against experimental porcine neonatal isosporosis. Parasitol. Res. 2007;100:401–411. doi: 10.1007/s00436-006-0314-9. PubMed DOI

Mundt H.C., Daugschies A., Wüstenberg S., Zimmermann M. Studies on the efficacy of toltrazuril, diclazuril and sulphadimidine against artificial infections with Isospora suis in piglets. Parasitol. Res. 2003;90:160–162. doi: 10.1007/s00436-003-0927-1. PubMed DOI

Joachim A., Mundt H.C. Efficacy of sulfonamides and Baycox® against Isospora suis in experimental infections of suckling piglets. Parasitol. Res. 2011;109:1653–1659. doi: 10.1007/s00436-011-2438-9. PubMed DOI

Scala A., Demontis F., Varcasia A., Pipia A.P., Poglayen G., Ferrari N., Genchi M. Toltrazuril and sulphonamide treatment against naturally Isospora suis infected suckling piglets: Is there an actual profit? Vet. Parasitol. 2009;163:362–365. doi: 10.1016/j.vetpar.2009.04.028. PubMed DOI

Joachim A., Shrestha A., Freudenschuss B., Palmieri N., Hinney B., Karembe H., Sperling D. Comparison of an injectable toltrazuril-gleptoferron (Forceris®) and an oral toltrazuril (Baycox®) + injectable iron dextran for the control of experimentally induced piglet cystoisosporosis. Parasit. Vectors. 2018;11:206. doi: 10.1186/s13071-018-2797-5. PubMed DOI PMC

Mengel H., Krüger M., Krüger M.U., Westphal B., Swidsinski A., Schwarz S., Mundt H.C., Dittmar K., Daugschies A. Necrotic enteritis due to simultaneous infection with Isospora suis and clostridia in newborn piglets and its prevention by early treatment with toltrazuril. Parasitol. Res. 2012;110:1347–1355. doi: 10.1007/s00436-011-2633-8. PubMed DOI

Hinney B., Cvjetković V., Espigares D., Vanhara J., Waehner C., Ruttkowski B., Selista R., Sperling D., Joachim A. Cystoisospora suis control in Europe is not always effective. Front. Vet. Sci. 2020;7:113. doi: 10.3389/fvets.2020.00113. PubMed DOI PMC

Hinney B., Sperling D., Kars-Hendriksen S., Olde Monnikhof M., Van Colen S., van der Wolf P., de Jonghe E., Libbrecht E., Peggy De-Backer P., Joachim A. Piglet coccidiosis in Belgium the Netherlands: Prevalence, management and potential risk factors. Vet. Parasitol. Reg. Stud. Rep. 2021;24:100581. PubMed

Hiob L., Holzhausen I., Sperling D., Pagny G., Meppiel L., Isaka N., Daugschies A. Efficacy of an injectable toltrazuril—Gleptoferron (Forceris) to control coccidiosis (Cystoisospora suis) in comparison with iron supplemented piglets without anticoccidial treatment. Vet. Parasitol. X. 2019;1:100002. doi: 10.1016/j.vpoa.2019.100002. PubMed DOI PMC

The European Medicines Agency for the Evaluation of Medicinal Products (EMA) Committee for Veterinary Medicinal Products. Forceris, Summary of Opinion (Initial Authorization) 2019. [(accessed on 15 September 2021)]. Available online: https://www.ema.europa.eu/en/documents/smop-initial/cvmp-summary-positive-opinion-forceris_en.pdf.

Joachim A., Guerra N., Hinney B., Hodžić A., Karembe H., Shrestha A., Sperling D. Efficacy of injectable toltrazuril-iron combination product and oral toltrazuril against early experimental infection of suckling piglets with Cystoisospora suis. Parasit. Vectors. 2019;12:272. doi: 10.1186/s13071-019-3527-3. PubMed DOI PMC

Sperling D., Freudenschuss B., Shrestha A., Hinney B., Karembe H., Joachim A. Comparative efficacy of two parenteral iron-containing preparations, iron gleptoferron and iron dextran, for the prevention of anaemia in suckling piglets. Vet. Rec. Open. 2018;5:e000317. doi: 10.1136/vetreco-2018-000317. PubMed DOI PMC

White N.J. Pharmacokinetic and pharmacodynamic considerations in antimalarial dose optimization. Antimicrob. Agents Chemother. 2013;57:5792–5807. doi: 10.1128/AAC.00287-13. PubMed DOI PMC

Yarlett N., Morada M., Gobin M., van Voorhis W., Arnold S. In vitro culture of Cryptosporidium parvum using hollow fiber bioreactor: Applications for simultaneous pharmacokinetic and pharmacodynamic evaluation of test compounds. Methods Mol. Biol. 2020;2052:335–350. PubMed

Arnold S.L.M., Choi R., Hulverson M.A., Schaefer D.A., Vinayak S., Vidadala R.S.R., McCloskey M.C., Whitman G.R., Huang W., Barrett L.K., et al. Necessity of bumped kinase inhibitor gastrointestinal exposure in treating Cryptosporidium infection. J. Infect. Dis. 2017;216:55–63. doi: 10.1093/infdis/jix247. PubMed DOI PMC

Shrestha A., Freudenschuss B., Jansen R., Hinney B., Ruttkowski B., Joachim A. Experimentally confirmed toltrazuril resistance in a field isolate of Cystoisospora suis. Parasit. Vectors. 2017;10:317. doi: 10.1186/s13071-017-2257-7. PubMed DOI PMC

Rhyu K.B., Patel H.C., Hopfinger A.J. A 3D-QSAR study of anticoccidial triazines using molecular shape analysis. J. Chem. Inf. Comput. Sci. 1995;35:771–778. doi: 10.1021/ci00026a016. PubMed DOI

Fei C., Fan C., Zhao Q., Lin Y., Wang X., Zheng W., Wang M., Zhang K., Zhang L., Li T., et al. Anticoccidial effects of a novel triazine nitromezuril in broiler chickens. Vet. Parasitol. 2013;198:39–44. doi: 10.1016/j.vetpar.2013.08.024. PubMed DOI

Fei C., Zhang J., Lin Y., Wang X., Zhang K., Zhang L., Zheng W., Wang M., Li T., Xiao S., et al. Safety evaluation of a triazine compound nitromezuril by assessing bacterial reverse mutation, sperm abnormalities, micronucleus and chromosomal aberration. Regul. Toxicol. Pharmacol. 2015;71:585–589. doi: 10.1016/j.yrtph.2015.01.011. PubMed DOI

Zhang M., Li X., Zhao Q., She R., Xia S., Zhang K., Zhang L., Wang X., Wang M., Liu Y., et al. Anticoccidial activity of novel triazine compounds in broiler chickens. Vet. Parasitol. 2019;267:4–8. doi: 10.1016/j.vetpar.2019.01.006. PubMed DOI

Zhang K., Li S., Zheng W., Zhang L., Wang C., Wang X., Fei C., Xue F., Wang M. Identification of in vitro metabolites of a new anticoccidial drug nitromezuril using HepG2 cells, rat S9 and primary hepatocytes by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2014;28:1723–1734. doi: 10.1002/rcm.6953. PubMed DOI

Cheng P., Wang C., Lin X., Zhang L., Fei C., Zhang K., Zhao J., Lei N., Liu L., Mu S., et al. Pharmacokinetics of a novel triazine ethanamizuril in rats and broiler chickens. Res. Vet. Sci. 2018;117:99–103. doi: 10.1016/j.rvsc.2017.11.001. PubMed DOI

Andrews K.T., Fisher G., Skinner-Adams T.S. Drug repurposing and human parasitic protozoan diseases. Int. J. Parasitol. Drugs Drug Resist. 2014;4:95–111. doi: 10.1016/j.ijpddr.2014.02.002. PubMed DOI PMC

Lee S., Harwood M., Girouard D., Meyers M.J., Campbell M.A., Beamer G., Tzipori S. The therapeutic efficacy of azithromycin and nitazoxanide in the acute pig model of Cryptosporidium hominis. PLoS ONE. 2017;12:e0185906. PubMed PMC

You X., Schinazi R.F., Arrowood M.J., Lejkowski M., Juodawlkis A.S., Mead J.R. In-vitro activities of paromomycin and lasalocid evaluated in combination against Cryptosporidium parvum. J. Antimicrob. Chemother. 1998;41:293–296. doi: 10.1093/jac/41.2.293. PubMed DOI

The European Agency for the Evaluation of Medical Products (EMA) Committee for Medical Products for Veterinary Use. CVMP Assessment Report for Forceris. 2019. [(accessed on 19 August 2021)]. Available online: https://www.ema.europa.eu/en/documents/assessment-report/forceris-epar-public-assessment-report_en.pdf.

Lim J.H., Kim M.S., Hwang Y.H., Song I.B., Park B.K., Yun H.I. Pharmacokinetics of toltrazuril and its metabolites, toltrazuril sulfoxide and toltrazuril sulfone, after a single oral administration to pigs. J. Vet. Med. Sci. 2010;72:1085–1087. doi: 10.1292/jvms.09-0524. PubMed DOI

Shrestha A., Ruttkowski B., Greber P., Whitman G.R., Hulverson M.A., Choi R., Michaels S.A., Ojo K.K., Van Voorhis W.C., Joachim A. Reduced treatment frequencies with bumped kinase inhibitor 1369 are effective against porcine cystoisosporosis. Int. J. Parasitol. Drugs Drug Resist. 2020;14:37–45. doi: 10.1016/j.ijpddr.2020.08.005. PubMed DOI PMC

The European Medicines Agency for the Evaluation of Medicinal Products (EMA) Committee for Medicinal Products for Human Use (CHMP). Guidelines on Bioanalytical Method Validation, EMEA/CHMP/EWP/192217/2009. [(accessed on 19 August 2021)]. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...