Effect of host switching simulation on the fitness of the gregarious parasitoid Anaphes flavipes from a novel two-generation approach
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34593852
PubMed Central
PMC8484349
DOI
10.1038/s41598-021-98393-y
PII: 10.1038/s41598-021-98393-y
Knihovny.cz E-zdroje
- MeSH
- býložravci MeSH
- genetická zdatnost * MeSH
- hmyz * MeSH
- interakce hostitele a parazita * MeSH
- rostliny parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Herbivorous insects can escape the strong pressure of parasitoids by switching to feeding on new host plants. Parasitoids can adapt to this change but at the cost of changing their preferences and performance. For gregarious parasitoids, fitness changes are not always observable in the F1 generation but only in the F2 generation. Here, with the model species and gregarious parasitoid Anaphes flavipes, we examined fitness changes in the F1 generation under pressure from the simulation of host switching, and by a new two-generation approach, we determined the impact of these changes on fitness in the F2 generation. We showed that the parasitoid preference for host plants depends on hatched or oviposited learning in relation to the possibility of parasitoid decisions between different host plants. Interestingly, we showed that after simulation of parasitoids following host switching, in the new environment of a fictitious host plant, parasitoids reduced the fictitious host. At the same time, parasitoids also reduced fertility because in fictitious hosts, they are not able to complete larval development. However, from a two-generation approach, the distribution of parasitoid offspring into both native and fictitious hosts caused lower parasitoid clutch size in native hosts and higher individual offspring fertility in the F2 generation.
Crop Research Institute Drnovská 507 161 06 Praha 6 Ruzyně Czech Republic
Department of Zoology Faculty of Science Charles University Viničná 7 128 43 Prague 2 Czech Republic
Zobrazit více v PubMed
Hairston NG, Smith FE, Lawrence BS. Community structure, population control, and competition. Am. Nat. 1960;94:421–425. doi: 10.1086/282146. DOI
Gross P. Insect behavioral and morphological defenses against parasitoid. Annu. Rev. Entomol. 1993;38:251–273. doi: 10.1146/annurev.en.38.010193.001343. DOI
Tylikinais JM, Tscharntke T, Klein AM. Diversity, ecosystem function and stability of parasitoid—host interactions across a tropical habitat gradient. Ecology. 2006;87:3047–3057. doi: 10.1890/0012-9658(2006)87[3047:DEFASO]2.0.CO;2. PubMed DOI
Strand MR, Obrycki JJ. Host specificity of insect parasitoids and predators. Bioscience. 1996;46:422–429. doi: 10.2307/1312876. DOI
Dawkins R, Krebs JR. Arms races between and within species. Proc. R. Soc. Lond. B. 1979;205:489–511. doi: 10.1098/rspb.1979.0081. PubMed DOI
Kraaijeveld AR, van Alphen JJM, Godfray HCJ. The coevolution of host resistance and parasitoid virulence. Parasitology. 1998;116:29–45. doi: 10.1017/S0031182000084924. PubMed DOI
Jeffries MJ, Lawton JH. Enemy free space and the structure of ecological communities. Biol. J. Linn. Soc. 1984;23:269–286. doi: 10.1111/j.1095-8312.1984.tb00145.x. DOI
Grosman AH, Molina-Rugama AJ, Mendes-Dias R, Sabelis MW, Menken SBJ, et al. No adaptation of a herbivore to a novel host but loss of adaptation to its native host. Sci. Rep.-UK. 2015;5:16211. doi: 10.1038/srep16211. PubMed DOI PMC
Diamond SE, Kingsolver JG. Fitness consequences of host plant choice: A field experiment. Oikos. 2010;119:542–550. doi: 10.1111/j.1600-0706.2009.17242.x. DOI
Meijer K, Schilthuizen M, Beukeboom L, Smit C. A review and meta-analysis of the enemy release hypothesis in plant–herbivorous insect systems. PeerJ. 2016;4:e2778. doi: 10.7717/peerj.2778. PubMed DOI PMC
Forbes AA, Powell TH, Stelinski LL, Smith JJ, Feder JL. Sequential sympatric speciation across trophic levels. Science. 2009;323:776–779. doi: 10.1126/science.1166981. PubMed DOI
Grosman AH, Holtz AM, Pallini A, Sabelis MW, Janssen A. Parasitoids follow herbivorous insects to a novel host plant, generalist predators less so. Entomol. Exp. Appl. 2017;162:261–271. doi: 10.1111/eea.12545. DOI
Soler R, Bezemer TM, Van Der Putten WH, Vet LE, Harvey JA. Root herbivore effects on above-ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. J. Anim. Ecol. 2005;74:1121–1130. doi: 10.1111/j.1365-2656.2005.01006.x. DOI
Ode PJ. Plant chemistry and natural enemy fitness: Effects on herbivore and natural enemy interactions. Annu. Rev. Entomol. 2006;51:163–185. doi: 10.1146/annurev.ento.51.110104.151110. PubMed DOI
Thompson JN. Trade-offs in larval performance on normal and novel hosts. Entomol. Exp. Appl. 1996;80:133–139. doi: 10.1111/j.1570-7458.1996.tb00903.x. DOI
Lucas É, Coderre D, Brodeur J. Intraguild predation among aphid predators: Characterization and influence of extraguild prey density. Ecology. 1998;79:1084–1092. doi: 10.1890/0012-9658(1998)079[1084:IPAAPC]2.0.CO;2. DOI
Henry LM, May N, Acheampong S, Gillespie DR, Roitberg BD. Host-adapted parasitoids in biological control: Does source matter? Ecol. Appl. 2010;20:242–250. doi: 10.1890/08-1869.1. PubMed DOI
Mackauer M. Sexual size dimorphism in solitary parasitoid wasps: influence of host quality. Oikos. 1996;76:265–272. doi: 10.2307/3546199. DOI
Bezemer TM, Mills NJ. Clutch size decisions of a gregarious parasitoid under laboratory and feld conditions. Anim. Behav. 2003;66:1119–1128. doi: 10.1006/anbe.2003.2296. DOI
Samková A, Hadrava J, Skuhrovec J, Janšta P. Host population density and presence of predators as key factors influencing the number of gregarious parasitoid Anaphes flavipes offspring. Sci. Rep.-UK. 2019;9:6081. doi: 10.1038/s41598-019-42503-4. PubMed DOI PMC
Schmidt JM, Smith JJB. Correlations between body angles and substrate curvature in the parasitoid wasp Trichogramma minutum: a possible mechanism of host radius measurement. J. Exp. Biol. 1986;125:271–285. doi: 10.1242/jeb.125.1.271. DOI
Boivin G, Baaren J. The role of larval aggression and mobility in the transition between solitary and gregarious development in parasitoid wasps. Ecol. Lett. 2000;3:469–474. doi: 10.1046/j.1461-0248.2000.00174.x. DOI
Mayhew PJ. The evolution of gregariousness in parasitoid wasps. P. Roy. Soc. Lond. B. Bio. 1998;265:383–389. doi: 10.1098/rspb.1998.0306. DOI
Pexton JJ, Mayhew PJ. Competitive interactions between parasitoid larvae and the evolution of gregarious development. Oecologia. 2004;141:179–190. doi: 10.1007/s00442-004-1659-3. PubMed DOI
Harvey PH, Partridge L. Murderous mandibles and black holes in hymenopteran wasps. Nature. 1987;326:128–129. doi: 10.1038/326128a0. DOI
Godfray HCJ. The evolution of clutch size in parasitic wasps. Am. Nat. 1987;129:221–233. doi: 10.1086/284632. DOI
Rosenheim JA. Single-sex broods and the evolution of nonsiblicidal parasitoid wasps. Am. Nat. 1993;141:90–104. doi: 10.1086/285462. DOI
Mayhew PJ, van Alphen JJ. Gregarious development in alysiine parasitoids evolved through a reduction in larval aggression. Anim. Behav. 1999;58:131–141. doi: 10.1006/anbe.1999.1106. PubMed DOI
Pexton JJ, Mayhew PJ. Immobility: The key to family harmony? Trends. Ecol. Evol. 2001;16:7–9. doi: 10.1016/S0169-5347(00)02034-6. PubMed DOI
Hamilton WD. Extraordinary sex ratios. Science. 1967;156:477–488. doi: 10.1126/science.156.3774.477. PubMed DOI
Mayhew PJ, Hardy IC. Nonsiblicidal behavior and the evolution of clutch size in bethylid wasps. Am. Nat. 1998;151:409–424. doi: 10.1086/286129. PubMed DOI
Zaviezo T, Mills N. Factors influencing the evolution of clutch size in a gregarious insect parasitoid. J. Anim. Ecol. 2000;69:1047–1057. doi: 10.1046/j.1365-2656.2000.00460.x. DOI
Koppik M, Tiel A, Hofmeister TS. Adaptive decision making or diferential mortality: What causes ofspring emergence in a gregarious parasitoid? Entomol. Exp. Appl. 2014;150:208–216. doi: 10.1111/eea.12154. DOI
Visser ME, Van Alphen JJ, Hemerik L. Adaptive superparasitism and patch time allocation in solitary parasitoids: An ESS model. J. Anim. Ecol. 1992;61:93–101. doi: 10.2307/5512. DOI
Waage JK, Ming NS. The reproductive strategy of a parasitic wasp: I. optimal progeny and sex allocation in Trichogramma evanescens. J. An. Ecol. 1984;53:401–415. doi: 10.2307/4524. DOI
Harvey JA, Poelman EH, Tanaka T. Intrinsic inter-and intraspecific competition in parasitoid wasps. Ann. Rev. Entomol. 2013;58:333–351. doi: 10.1146/annurev-ento-120811-153622. PubMed DOI
Harvey JA, Bezemer TM, Gols R, Nakamatsu Y, Tanaka T. Comparing the physiological effects and function of larval feeding in closely-related endoparasitoids (Braconidae: Microgastrinae) Physiol. Entomol. 2008;33:217–225. doi: 10.1111/j.1365-3032.2008.00623.x. DOI
Cloutier C, Duperron J, Tertuliano M, McNeil JN. Host instar, body size and fitness in the koinobiotic parasitoid Aphidius nigripes. Entomol. Exp. Appl. 2000;97:29–40. doi: 10.1046/j.1570-7458.2000.00713.x. DOI
Bai B, Luck RF, Forster L, Stephens B, Janssen JM. The effect of host size on quality attributes of the egg parasitoid Trichogramma pretiosum. Entomol. Exp. Appl. 1992;64:37–48. doi: 10.1111/j.1570-7458.1992.tb01592.x. DOI
Kazmer DJ, Luck RF. Field tests of the size-fitness hypothesis in the egg parasitoid Trichogramma Pretiosum. Ecology. 1995;76:412–425. doi: 10.2307/1941200. DOI
Samková A, Hadrava J, Skuhrovec J, Janšta P. Reproductive strategy as a major factor determining female body size and fertility of a gregarious parasitoid. J. Appl. Entomol. 2019;143:441–450. doi: 10.1111/jen.12615. DOI
Wei K, Tang YL, Wang XY, Cao LM, Yang ZQ. The developmental strategies and related profitability of an idiobiont ectoparasitoid Sclerodermus pupariae vary with host size. Ecol. Entomol. 2014;39:101–108. doi: 10.1111/een.12074. DOI
May RM, Hassell MP, Anderson MR, Tonkyn DV. Density dependence in host-parasitoid models. J. Anim. Ecol. 1981;50:855–865. doi: 10.2307/4142. DOI
Hoddle MS, Van Driesche RG, Elkinton JS, Sanderson JP. Discovery and utilization of Bemisia argentifolii patches by Eretmocerus eremicus and Encarsia formosa (Beltsville strain) in greenhouses. Entomol. Exp. Appl. 1998;87:15–28. doi: 10.1046/j.1570-7458.1998.00300.x. DOI
Samková A, Raska J, Hadrava J, Skuhrovec J. An intergenerational approach for prediction of parasitoid population dynamics. BioRxiv. 2021 doi: 10.1101/2021.02.22.432341. DOI
Anderson RC, Paschke JD. The biology and ecology of Anaphes flavipes (Hymenoptera: Mymaridae), an exotic egg parasite of the cereal leaf beetle. Ann. Entomol. Soc. Am. 1968;61:1–5. doi: 10.1093/aesa/61.1.1. DOI
Klomp H, Teerink BJ. The significance of oviposition rates in the egg parasite Trichogramma embryophagum Htg. Arch. Neerl. Zool. 1967;17:350–375. doi: 10.1163/036551667X00065. DOI
Waage JK, Lane JA. The reproductive strategy of a parasitic wasp: II. Sex allocation and local mate competition in Trichogramma evanescens. J. Anim. Ecol. 1984;53:417–426. doi: 10.2307/4525. DOI
Dysart RJ, Maltby HL, Brunson MH. Larval parasites of Oulema melanopus in Europe and their colonization in the United States. Entomophaga. 1973;18:133–167. doi: 10.1007/BF02372026. DOI
Skuhrovec J, Douda O, Zouhar M, Maňasová M, Nový P, Božik M, Klouček P. Insecticidal activity of two formulations of essential oils against the cereal leaf beetle. Acta Agr. Scand. 2018;68:489–495.
Jervis MA, Ellers J, Harvey JA. Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annu. Rev. Entomol. 2008;53:361–385. doi: 10.1146/annurev.ento.53.103106.093433. PubMed DOI
Vinson SB, Iwantsch GF. Host suitability for insect parasitoids. Ann. Rev. Entomol. 1980;25:397–419. doi: 10.1146/annurev.en.25.010180.002145. DOI
Mackauer M, Sequeira R, Otto M. Vertical Food Web Interactions. Springer; 1997. Growth and development in parasitoid wasps adaptation to variable host resources; pp. 191–203.
Ode PJ. Plant toxins and parasitoid trophic ecology. Curr. Opin. Insect sci. 2019;32:118–123. doi: 10.1016/j.cois.2019.01.007. PubMed DOI
Cronin JT, Abrahamson WG. Do parasitoids diversify in response to host-plant shifts by herbivorous insects? Ecol. Entomol. 2001;26:347–355. doi: 10.1046/j.1365-2311.2001.00332.x. DOI
Sarfraz M, Dosdall LM, Keddie BA. Host plant nutritional quality affects the performance of the parasitoid Diadegma insulare. Biol. Control. 2009;51:34–41. doi: 10.1016/j.biocontrol.2009.07.004. DOI
Harvey JA. Factors affecting the evolution of development strategies in parasitoid wasps: The importance of functional constraints and incorporating complexity. Entomol. Exp. Appl. 2005;117:1–13. doi: 10.1111/j.1570-7458.2005.00348.x. DOI
Cortesero AM, Monge JP. Influence of pre-emergence experience on response to host and host plant odours in the larval parasitoid Eupelmus vuilleti. Entomol. Exp. Appl. 1994;72:281–288. doi: 10.1111/j.1570-7458.1994.tb01828.x. DOI
Gandolfi M, Mattiacci L, Dorn S. Preimaginal learning determines adult response to chemical stimuli in a parasitic wasp. Proc. Roy. Soc. Lon. Series. B-Biol. Scien. 2003;270:2623–2629. doi: 10.1098/rspb.2003.2541. PubMed DOI PMC
Kester KM, Barbosa P. Postemergence learning in the insect parasitoid, Cotesia congregata (Say) (Hymenoptera: Braconidae) J. Insect Behav. 1991;4:727–742. doi: 10.1007/BF01052227. DOI
Vet LE, Groenewold AW. Semiochemicals and learning in parasitoids. J. Chem. Ecol. 1990;16:3119–3135. doi: 10.1007/BF00979615. PubMed DOI
Samková A, Hadrava J, Skuhrovec J, Janšta P. Effect of adult feeding and timing of host exposure on the fertility and longevity of the parasitoid Anaphes flavipes. Entomol. Exp. Appl. 2019;167:932–938. doi: 10.1111/eea.12843. DOI
Jervis MA, Heimpel GE, Ferns PN, Harvey JA, Kidd NA. Life-history strategies in parasitoid wasps: A comparative analysis of ‘ovigeny’. J. Anim. Ecol. 2001;70:442–458. doi: 10.1046/j.1365-2656.2001.00507.x. DOI
Bjorksten TA, Hoffmann AA. Persistence of experience effects in the parasitoid Trichogramma nr. brassicae. Ecol. Entomol. 1998;23:110–117. doi: 10.1046/j.1365-2311.1998.00120.x. DOI
Lentz AJ, Kester KM. Postemergence experience affects sex ratio allocation in a gregarious insect parasitoid. J. Insect. Behav. 2008;21:34–45. doi: 10.1007/s10905-007-9102-3. DOI
Nishida R. Sequestration of defensive substances from plants by Lepidoptera. Annu. Rev. Entomol. 2002;47:57–92. doi: 10.1146/annurev.ento.47.091201.145121. PubMed DOI
Zvereva EL, Rank NE. Fly parasitoid Megaselia opacicornis uses defensive secretions of the leaf beetle Chrysomela lapponica to locate its host. Oecologia. 2004;140:516–522. doi: 10.1007/s00442-004-1602-7. PubMed DOI
Roy HE, Handley LJL, Schönrogge K, Poland RL, Purse BV. Can the enemy release hypothesis explain the success of invasive alien predators and parasitoids? Biocontrol. 2011;56:451–468. doi: 10.1007/s10526-011-9349-7. DOI
Snyder WE, Ives AR. Interactions between specialist and generalist natural enemies: Parasitoids, predators, and pea aphid biocontrol. Ecology. 2003;84:91–107. doi: 10.1890/0012-9658(2003)084[0091:IBSAGN]2.0.CO;2. DOI
Polis GA, Myers CA, Holt RD. The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annu. Rev. Ecol. Syst. 1989;20:297–330. doi: 10.1146/annurev.es.20.110189.001501. DOI
Nakashima Y, Senoo N. Avoidance of ladybird trails by an aphid parasitoid Aphidius ervi: active period and efects of prior oviposition experience. Entomol. Exp. Appl. 2003;109:163–166. doi: 10.1046/j.1570-7458.2003.00094.x. DOI
Samková A, Raška J, Hadrava J, Skuhrovec J, Janšta P. Female manipulation of offspring sex ratio in the gregarious parasitoid Anaphes flavipes from a new two-generation approach. BioRxiv. 2021 doi: 10.1101/2021.02.22.432331. DOI
Visser ME. The importance of being large: the relationship between size and fitness in females of the parasitoid Aphaereta minuta (Hymenoptera: Braconidae) J. Anim. Ecol. 1994;63:963–978. doi: 10.2307/5273. DOI
Banks M, Thomson DJ. Lifetime mating success in the damselfly Coenagrion puella. Anim. Behav. 1985;33:1175–1183. doi: 10.1016/S0003-3472(85)80178-0. DOI
Ellers J, Jervis M. Body size and the timing of egg production in parasitoid wasps. Oikos. 2003;102:164–172. doi: 10.1034/j.1600-0706.2003.12285.x. DOI
Anderson RC, Paschke JD. Additional Observations on the Biology of Anaphes flavipes (Hymenoptera: Mymaridae), with Special Reference to the Efects of Temperature and Superparasitism on Development. Ann. Entomol. Soc. Am. 1969;62:1316–1321. doi: 10.1093/aesa/62.6.1316. DOI
Bezděk J, Baselga A. Revision of western Palaearctic species of the Oulema melanopus group, with description of two new species from Europe (Coleoptera: Chrysomelidae: Criocerinae) Acta. Ent. Mus. Nat. Pra. 2015;55:273–304.
R. Core Team R . A language and environment for statistical computing. R Foundation for Statistical Computing. R Core Team; 2020.
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw67, 1–48. (2015) URL: https://CRAN.R-project.org/package=Hmisc.
Harrell, F. E. Jr, Dupont, C., et mult. al. (2020) Hmisc: Harrell Miscellaneous. R package version 4.4–2. URL: https://CRAN.R-project.org/package=Hmisc.
Signorell et mult. al. (2021). DescTools: Tools for descriptive statistics. R package version 0.99.40. URL: https://cran.r-project.org/package=DescTools.