Separation of ctDNA by superparamagnetic bead particles in microfluidic platform for early cancer detection
Language English Country Egypt Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34603782
PubMed Central
PMC8463959
DOI
10.1016/j.jare.2021.03.001
PII: S2090-1232(21)00036-9
Knihovny.cz E-resources
- Keywords
- COMSOL Multiphysics Simulation study, Cancer biomarker, Circulating tumor DNA (ctDNA) detection, Liquid biopsy Magnetic manipulation,
- MeSH
- Circulating Tumor DNA * MeSH
- Humans MeSH
- Magnetic Iron Oxide Nanoparticles MeSH
- Microfluidics MeSH
- Neoplasms * diagnosis MeSH
- Liquid Biopsy MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Circulating Tumor DNA * MeSH
INTRODUCTION: Conventional biopsy, based on extraction from a tumor of a solid tissue specimen requiring needles, endoscopic devices, excision or surgery, is at risk of infection, internal bleeding or prolonged recovery. A non-invasive liquid biopsy is one of the greatest axiomatic consequences of the identification of circulating tumor DNA (ctDNA) as a replaceable surgical tumor bioQpsy technique. Most of the literature studies thus far presented ctDNA detection at almost final stage III or IV of cancer, where the treatment option or cancer management is nearly impossible for diagnosis. OBJECTIVE: Hence, this paper aims to present a simulation study of extraction and separation of ctDNA from the blood plasma of cancer patients of stage I and II by superparamagnetic (SPM) bead particles in a microfluidic platform for early and effective cancer detection. METHOD: The extraction of ctDNA is based on microfiltration of particle size to filter some impurities and thrombocytes plasma, while the separation of ctDNA is based on magnetic manipulation to high yield that can be used for the upstream process. RESULT: Based on the simulation results, an average of 5.7 ng of ctDNA was separated efficiently for every 10 µL blood plasma input and this can be used for early analysis of cancer management. The particle tracing module from COMSOL Multiphysics traced ctDNA with 65.57% of sensitivity and 95.38% of specificity. CONCLUSION: The findings demonstrate the ease of use and versatility of a microfluidics platform and SPM bead particles in clinical research related to the preparation of biological samples. As a sample preparation stage for early analysis and cancer diagnosis, the extraction and separation of ctDNA is most important, so precision medicine can be administered.
See more in PubMed
Sumbal S., Javed A., Afroze B., Zulfiqar H.F., Javed F., Noreen S. Circulating tumor DNA in blood: Future genomic biomarkers for cancer detection. Exp Hematol. 2018;65:17–28. doi: 10.1016/j.exphem.2018.06.003. PubMed DOI
Reinert T., Schøler L.V., Thomsen R., Tobiasen H., Vang S., Nordentoft I. Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery. Gut. 2016;65(4):625–634. doi: 10.1136/gutjnl-2014-308859. PubMed DOI
Sorber L., Zwaenepoel K., Deschoolmeester V., Van Schil P.E.Y., Van Meerbeeck J., Lardon F. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung Cancer. 2017;107:100–107. doi: 10.1016/j.lungcan.2016.04.026. PubMed DOI
Han X., Wang J., Sun Y. Circulating tumor DNA as biomarkers for cancer detection. Genom, Proteom Bioinforma. 2017;15(2):59–72. doi: 10.1016/j.gpb.2016.12.004. PubMed DOI PMC
Soyano A.E., Baldeo C., Kasi P.M. Adjunctive use of circulating tumor DNA testing in detecting pancreas cancer recurrence. Front Oncol. 2019 doi: 10.3389/fonc.2019.00046. PubMed DOI PMC
Fiala C., Diamandis E.P. Utility of circulating tumor DNA in cancer diagnostics with emphasis on early detection. BMC Med. 2018;16(1) doi: 10.1186/s12916-018-1157-9. PubMed DOI PMC
Merker JD, Oxnard GR, Compton C, Diehn M, Hurley P, Lazar AJ, et al. Circulating tumor DNA analysis in patients with cancer: American society of clinical oncology and college of American pathologists joint review. Arch Pathol Lab Med 2018. doi: 10.5858/arpa.2018-0901-SA. PubMed
Li H, Jing C, Wu J, Ni JIE, Sha H, Xu X, et al. Circulating tumor DNA detection: A potential tool for colorectal cancer management. Oncol Lett 2019. doi:10.3892/ol.2018.9794. PubMed PMC
Neumann MHD, Bender S, Krahn T, Schlange T. ctDNA and CTCs in liquid biopsy – current status and where we need to progress. Comput Struct Biotechnol J 2018. doi:10.1016/j.csbj.2018.05.002. PubMed PMC
Nations U, Programme E, Criteria EH, Management S, Programme TI, Safety C, et al. Biomarkers in risk assessment: validity and validation 2014: 1–21.
Kang G., Chen K., Yang F., Chuai S., Zhao H., Zhang K. Monitoring of circulating tumor DNA and its aberrant methylation in the surveillance of surgical lung Cancer patients: Protocol for a prospective observational study. BMC Cancer. 2019;19(1) doi: 10.1186/s12885-019-5751-9. PubMed DOI PMC
Chaudhuri A.A., Binkley M.S., Osmundson E.C., Alizadeh A.A., Diehn M. Predicting radiotherapy responses and treatment outcomes through analysis of circulating tumor DNA. Semin Radiat Oncol. 2015;25(4):305–312. doi: 10.1016/j.semradonc.2015.05.001. PubMed DOI PMC
Wan J.C.M., Massie C., Garcia-Corbacho J., Mouliere F., Brenton J.D., Caldas C. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223–238. doi: 10.1038/nrc.2017.7. PubMed DOI
Guan Y., Mayba O., Sandmann T., Lu S., Choi Y., Darbonne W.C. High-throughput and sensitive quantification of circulating tumor DNA by microfluidic-based multiplex PCR and next-generation sequencing. J Mol Diagnostics. 2017;19(6):921–932. doi: 10.1016/j.jmoldx.2017.08.001. PubMed DOI
Abou Daya S., Mahfouz R. Circulating tumor DNA, liquid biopsy, and next generation sequencing: A comprehensive technical and clinical applications review. Meta Gene. 2018;17:192–201. doi: 10.1016/j.mgene.2018.06.013. DOI
Newman A.M., Lovejoy A.F., Klass D.M., Kurtz D.M., Chabon J.J., Scherer F. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol. 2016;34(5):547–555. doi: 10.1038/nbt.3520. PubMed DOI PMC
Sun K., Jiang P., Chan K.C.A., Wong J., Cheng Y.K.Y., Liang R.H.S. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci. 2015;112(40):E5503–E5512. doi: 10.1073/pnas.1508736112. PubMed DOI PMC
Gabriel MT, Calleja LR, Chalopin A, Ory B, Heymann D. Circulating tumor cells: A review of Non-EpCAM-based approaches for cell enrichment and isolation. Clin Chem 2016. doi:10.1373/clinchem.2015.249706. PubMed
Coombes RC, Page K, Salari R, Hastings RK, Armstrong A, Ahmed S, et al. Personalized detection of circulating tumor DNA antedates breast cancer metastatic recurrence. Clin Cancer Res 2019. doi:10.1158/1078-0432.CCR-18-3663. PubMed
Bruijns B, van Asten A, Tiggelaar R, Gardeniers H. Microfluidic devices for forensic DNA analysis: A review. Biosensors 2016. doi:10.3390/bios6030041. PubMed PMC
Samla G., Gan K.B., Then S.-M. Modeling microfluidic DNA extraction using superparamagnetic bead particles in COMSOL multiphysics simulation. Microsyst Technol. 2017;23(10):4435–4440. doi: 10.1007/s00542-016-3170-2. DOI
Gauri S., Gan K.B., Then S.-M. Simulation of DNA extraction and separation from salivary fluid by superparamagnetic beads and electromagnetic field in microfluidic platform. Microsyst Technol. 2019;25(4):1379–1385. doi: 10.1007/s00542-018-4102-0. DOI