• This record comes from PubMed

Separation of ctDNA by superparamagnetic bead particles in microfluidic platform for early cancer detection

. 2021 Nov ; 33 () : 109-116. [epub] 20210306

Language English Country Egypt Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 34603782
PubMed Central PMC8463959
DOI 10.1016/j.jare.2021.03.001
PII: S2090-1232(21)00036-9
Knihovny.cz E-resources

INTRODUCTION: Conventional biopsy, based on extraction from a tumor of a solid tissue specimen requiring needles, endoscopic devices, excision or surgery, is at risk of infection, internal bleeding or prolonged recovery. A non-invasive liquid biopsy is one of the greatest axiomatic consequences of the identification of circulating tumor DNA (ctDNA) as a replaceable surgical tumor bioQpsy technique. Most of the literature studies thus far presented ctDNA detection at almost final stage III or IV of cancer, where the treatment option or cancer management is nearly impossible for diagnosis. OBJECTIVE: Hence, this paper aims to present a simulation study of extraction and separation of ctDNA from the blood plasma of cancer patients of stage I and II by superparamagnetic (SPM) bead particles in a microfluidic platform for early and effective cancer detection. METHOD: The extraction of ctDNA is based on microfiltration of particle size to filter some impurities and thrombocytes plasma, while the separation of ctDNA is based on magnetic manipulation to high yield that can be used for the upstream process. RESULT: Based on the simulation results, an average of 5.7 ng of ctDNA was separated efficiently for every 10 µL blood plasma input and this can be used for early analysis of cancer management. The particle tracing module from COMSOL Multiphysics traced ctDNA with 65.57% of sensitivity and 95.38% of specificity. CONCLUSION: The findings demonstrate the ease of use and versatility of a microfluidics platform and SPM bead particles in clinical research related to the preparation of biological samples. As a sample preparation stage for early analysis and cancer diagnosis, the extraction and separation of ctDNA is most important, so precision medicine can be administered.

See more in PubMed

Sumbal S., Javed A., Afroze B., Zulfiqar H.F., Javed F., Noreen S. Circulating tumor DNA in blood: Future genomic biomarkers for cancer detection. Exp Hematol. 2018;65:17–28. doi: 10.1016/j.exphem.2018.06.003. PubMed DOI

Reinert T., Schøler L.V., Thomsen R., Tobiasen H., Vang S., Nordentoft I. Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery. Gut. 2016;65(4):625–634. doi: 10.1136/gutjnl-2014-308859. PubMed DOI

Sorber L., Zwaenepoel K., Deschoolmeester V., Van Schil P.E.Y., Van Meerbeeck J., Lardon F. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung Cancer. 2017;107:100–107. doi: 10.1016/j.lungcan.2016.04.026. PubMed DOI

Han X., Wang J., Sun Y. Circulating tumor DNA as biomarkers for cancer detection. Genom, Proteom Bioinforma. 2017;15(2):59–72. doi: 10.1016/j.gpb.2016.12.004. PubMed DOI PMC

Soyano A.E., Baldeo C., Kasi P.M. Adjunctive use of circulating tumor DNA testing in detecting pancreas cancer recurrence. Front Oncol. 2019 doi: 10.3389/fonc.2019.00046. PubMed DOI PMC

Fiala C., Diamandis E.P. Utility of circulating tumor DNA in cancer diagnostics with emphasis on early detection. BMC Med. 2018;16(1) doi: 10.1186/s12916-018-1157-9. PubMed DOI PMC

Merker JD, Oxnard GR, Compton C, Diehn M, Hurley P, Lazar AJ, et al. Circulating tumor DNA analysis in patients with cancer: American society of clinical oncology and college of American pathologists joint review. Arch Pathol Lab Med 2018. doi: 10.5858/arpa.2018-0901-SA. PubMed

Li H, Jing C, Wu J, Ni JIE, Sha H, Xu X, et al. Circulating tumor DNA detection: A potential tool for colorectal cancer management. Oncol Lett 2019. doi:10.3892/ol.2018.9794. PubMed PMC

Neumann MHD, Bender S, Krahn T, Schlange T. ctDNA and CTCs in liquid biopsy – current status and where we need to progress. Comput Struct Biotechnol J 2018. doi:10.1016/j.csbj.2018.05.002. PubMed PMC

Nations U, Programme E, Criteria EH, Management S, Programme TI, Safety C, et al. Biomarkers in risk assessment: validity and validation 2014: 1–21.

Kang G., Chen K., Yang F., Chuai S., Zhao H., Zhang K. Monitoring of circulating tumor DNA and its aberrant methylation in the surveillance of surgical lung Cancer patients: Protocol for a prospective observational study. BMC Cancer. 2019;19(1) doi: 10.1186/s12885-019-5751-9. PubMed DOI PMC

Chaudhuri A.A., Binkley M.S., Osmundson E.C., Alizadeh A.A., Diehn M. Predicting radiotherapy responses and treatment outcomes through analysis of circulating tumor DNA. Semin Radiat Oncol. 2015;25(4):305–312. doi: 10.1016/j.semradonc.2015.05.001. PubMed DOI PMC

Wan J.C.M., Massie C., Garcia-Corbacho J., Mouliere F., Brenton J.D., Caldas C. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223–238. doi: 10.1038/nrc.2017.7. PubMed DOI

Guan Y., Mayba O., Sandmann T., Lu S., Choi Y., Darbonne W.C. High-throughput and sensitive quantification of circulating tumor DNA by microfluidic-based multiplex PCR and next-generation sequencing. J Mol Diagnostics. 2017;19(6):921–932. doi: 10.1016/j.jmoldx.2017.08.001. PubMed DOI

Abou Daya S., Mahfouz R. Circulating tumor DNA, liquid biopsy, and next generation sequencing: A comprehensive technical and clinical applications review. Meta Gene. 2018;17:192–201. doi: 10.1016/j.mgene.2018.06.013. DOI

Newman A.M., Lovejoy A.F., Klass D.M., Kurtz D.M., Chabon J.J., Scherer F. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol. 2016;34(5):547–555. doi: 10.1038/nbt.3520. PubMed DOI PMC

Sun K., Jiang P., Chan K.C.A., Wong J., Cheng Y.K.Y., Liang R.H.S. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci. 2015;112(40):E5503–E5512. doi: 10.1073/pnas.1508736112. PubMed DOI PMC

Gabriel MT, Calleja LR, Chalopin A, Ory B, Heymann D. Circulating tumor cells: A review of Non-EpCAM-based approaches for cell enrichment and isolation. Clin Chem 2016. doi:10.1373/clinchem.2015.249706. PubMed

Coombes RC, Page K, Salari R, Hastings RK, Armstrong A, Ahmed S, et al. Personalized detection of circulating tumor DNA antedates breast cancer metastatic recurrence. Clin Cancer Res 2019. doi:10.1158/1078-0432.CCR-18-3663. PubMed

Bruijns B, van Asten A, Tiggelaar R, Gardeniers H. Microfluidic devices for forensic DNA analysis: A review. Biosensors 2016. doi:10.3390/bios6030041. PubMed PMC

Samla G., Gan K.B., Then S.-M. Modeling microfluidic DNA extraction using superparamagnetic bead particles in COMSOL multiphysics simulation. Microsyst Technol. 2017;23(10):4435–4440. doi: 10.1007/s00542-016-3170-2. DOI

Gauri S., Gan K.B., Then S.-M. Simulation of DNA extraction and separation from salivary fluid by superparamagnetic beads and electromagnetic field in microfluidic platform. Microsyst Technol. 2019;25(4):1379–1385. doi: 10.1007/s00542-018-4102-0. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...