Repertoire analysis of γδ T cells in the chicken enables functional annotation of the genomic region revealing highly variable pan-tissue TCR gamma V gene usage as well as identifying public and private repertoires
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
34610803
PubMed Central
PMC8493715
DOI
10.1186/s12864-021-08036-9
PII: 10.1186/s12864-021-08036-9
Knihovny.cz E-zdroje
- Klíčová slova
- Chicken, Gamma, Locus, Repertoire, Sequencing, T cell, TCR,
- MeSH
- genom * MeSH
- genomika MeSH
- kur domácí * genetika MeSH
- receptory antigenů T-buněk gama-delta * genetika MeSH
- T-lymfocyty MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- receptory antigenů T-buněk gama-delta * MeSH
BACKGROUND: Despite increasing interest in γδ T cells and their non-classical behaviour, most studies focus on animals with low numbers of circulating γδ T cells, such as mice and humans. Arguably, γδ T cell functions might be more prominent in chickens where these cells form a higher proportion of the circulatory T cell compartment. The TCR repertoire defines different subsets of γδ T cells, and such analysis is facilitated by well-annotated TCR loci. γδ T cells are considered at the cusp of innate and adaptive immunity but most functions have been identified in γδ low species. A deeper understanding of TCR repertoire biology in γδ high and γδ low animals is critical for defining the evolution of the function of γδ T cells. Repertoire dynamics will reveal populations that can be classified as innate-like or adaptive-like as well as those that straddle this definition. RESULTS: Here, a recent discrepancy in the structure of the chicken TCR gamma locus is resolved, demonstrating that tandem duplication events have shaped the evolution of this locus. Importantly, repertoire sequencing revealed large differences in the usage of individual TRGV genes, a pattern conserved across multiple tissues, including thymus, spleen and the gut. A single TRGV gene, TRGV3.3, with a highly diverse private CDR3 repertoire dominated every tissue in all birds. TRGV usage patterns were partly explained by the TRGV-associated recombination signal sequences. Public CDR3 clonotypes represented varying proportions of the repertoire of TCRs utilising different TRGVs, with one TRGV dominated by super-public clones present in all birds. CONCLUSIONS: The application of repertoire analysis enabled functional annotation of the TCRG locus in a species with a high circulating γδ phenotype. This revealed variable usage of TCRGV genes across multiple tissues, a pattern quite different to that found in γδ low species (human and mouse). Defining the repertoire biology of avian γδ T cells will be key to understanding the evolution and functional diversity of these enigmatic lymphocytes in an animal that is numerically more reliant on them. Practically, this will reveal novel ways in which these cells can be exploited to improve health in medical and veterinary contexts.
Department of Zoology University of Oxford Oxford UK
The Pirbright Institute Ash Road Pirbright Woking Surrey United Kingdom
Veterinary Faculty Ludwig Maximillians University Planegg Germany
Zobrazit více v PubMed
Flajnik MF. Re-evaluation of the immunological big bang. Curr Biol. 2014;24(21):R1060–R1065. doi: 10.1016/j.cub.2014.09.070. PubMed DOI PMC
Cooper MD, Alder MN. The evolution of adaptive immune systems. Cell. 2006;124(4):815–822. doi: 10.1016/j.cell.2006.02.001. PubMed DOI
Attaf M, Legut M, Cole DK, Sewell AK. The T cell antigen receptor: the Swiss army knife of the immune system. Clin Exp Immunol. 2015;181(1):1–18. doi: 10.1111/cei.12622. PubMed DOI PMC
Paul S, Lal G. Regulatory and effector functions of gamma-delta (γδ) T cells and their therapeutic potential in adoptive cellular therapy for cancer. Int J Cancer. 2016;139(5):976–985. doi: 10.1002/ijc.30109. PubMed DOI
Prinz I, Silva-Santos B, Pennington DJ. Functional development of γδ T cells. Eur J Immunol. 2013;43(8):1988–1994. doi: 10.1002/eji.201343759. PubMed DOI
Bonneville M, O’Brien RL, Born WK. γ δ T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol. 2010;10(7):467–478. doi: 10.1038/nri2781. PubMed DOI
Sumaria N, Roediger B, Ng LG, Qin J, Pinto R, Cavanagh LL, Shklovskaya E, Fazekas de St. Groth B, Triccas JA, Weninger W. Cutaneous immunosurveillance by self-renewing dermal γδ T cells. J Exp Med. 2011;208(3):505–518. doi: 10.1084/jem.20101824. PubMed DOI PMC
Holderness J, Hedges JF, Ramstead A, Jutila MA. Comparative biology of γδ T cell function in humans, mice, and domestic animals. Vol. 1, Annual Review of Animal Biosciences. 2013. p. 99–124. PubMed
Hayday AC. γδ Cells: A right time and a right place for a conserved third way of protection. Annu Rev Immunol. 2000;18:975–1026. PubMed
Faldyna M, Levá L, Knötigová P, Toman M. Lymphocyte subsets in peripheral blood of dogs - a flow cytometric study. Vet Immunol Immunopathol. 2001;82(1–2):23–37. doi: 10.1016/S0165-2427(01)00337-3. PubMed DOI
Sowder JT, Chen CLH, Lanier Ager L, Chan MM, Cooper MD. Large subpopulation of avian T cells express a homologue of the mammalian Tγ/δ receptor. J Exp Med. 1988;167(2):315–322. doi: 10.1084/jem.167.2.315. PubMed DOI PMC
Mackay CR, Hein WR. A large proportion of bovine T cells express the γδ T cell receptor and show a distinct tissue distribution and surface phenotype. Int Immunol. 1989;1(5):540–545. doi: 10.1093/intimm/1.5.540. PubMed DOI
Piriou-Guzylack L, Salmon H. Membrane markers of the immune cells in swine: an update. Vet Res. 2008;39(54). PubMed
Caro MR, Gallego MC, Buendía AJ, Navarro E, Navarro JA. Postnatal evolution of lymphocyte subpopulations in peripheral blood and lymphoid organs in the goat. Res Vet Sci. 1998;65(2):145–148. doi: 10.1016/S0034-5288(98)90166-7. PubMed DOI
Yirsaw A, Baldwin CL. Goat γδ T cells. Dev comp Immunol [internet]. 2021;114(July 2020):103809. Available from. 2021. 10.1016/j.dci.2020.103809. PubMed
Khairallah C, Chu TH, Sheridan BS. Tissue Adaptations of Memory and Tissue-Resident Gamma Delta T Cells. Front Immunol. 2018;9(NOV):1–22. PubMed PMC
Ramsburg E, Tigelaar R, Craft J, Hayday A. Age-dependent requirement for γδ T cells in the primary but not secondary protective immune response against an intestinal parasite. J Exp Med. 2003;198(9):1403–1414. doi: 10.1084/jem.20030050. PubMed DOI PMC
Komano H, Fujiura Y, Kawaguchi M, Matsumoto S, Hashimoto Y, Obana S, Mombaerts P, Tonegawa S, Yamamoto H, Itohara S. Homeostatic regulation of intestinal epithelia by intraepithelial gamma delta T cells. Proc Natl Acad Sci U S A. 1995;92(13):6147–6151. doi: 10.1073/pnas.92.13.6147. PubMed DOI PMC
Girardi M, Glusac E, Filler RB, Roberts SJ, Propperova I, Lewis J, Tigelaar RE, Hayday AC. The distinct contributions of murine T cell receptor (TCR) γδ + and TCRαβ+ T cells to different stages of chemically induced skin cancer. J Exp Med. 2003;198(5):747–755. doi: 10.1084/jem.20021282. PubMed DOI PMC
Roberts SJ, Smith AL, West BA, Wen L, Findly CR, Owen MJ, et al. T-cell αβ+ and γδ+ deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium. Proc Natl Acad Sci. 1996;93(21):11774–11779. doi: 10.1073/pnas.93.21.11774. PubMed DOI PMC
Smith AL, Hayday AC. An αβ T-cell-independent immunoprotective response towards gut coccidia is supported by γδ cells. Immunology. 2000;101(3):325–332. doi: 10.1046/j.1365-2567.2000.00122.x. PubMed DOI PMC
Chien Y, Meyer C, Bonneville M. γδ T cells: first line of defense and beyond. Annu Rev Immunol. 2014;32(1):121–155. doi: 10.1146/annurev-immunol-032713-120216. PubMed DOI
Schat KA. Kaspers B. Avian Immunology: Kaiser P; 2014.
Carding SR, Egan PJ, Walter T, Hall E. γδ T cells : functional plasticity and heterogeneity. Immunology. 2002;2(May):336–345. doi: 10.1038/nri797. PubMed DOI
Pieper J, Methner U, Berndt A. Heterogeneity of avian γδ T cells. Vet Immunol Immunopathol. 2008;124(3–4):241–252. doi: 10.1016/j.vetimm.2008.03.008. PubMed DOI
Fenzl L, Göbel TW, Neulen ML. γδ T cells represent a major spontaneously cytotoxic cell population in the chicken. Dev Comp Immunol. 2017;73:175–183. doi: 10.1016/j.dci.2017.03.028. PubMed DOI
Berndt A, Methner U. Gamma/delta T cell response of chickens after oral administration of attenuated and non-attenuated salmonella typhimurium strains. Vet Immunol Immunopathol. 2001;78(2):143–161. doi: 10.1016/S0165-2427(00)00264-6. PubMed DOI
Choi KD, Lillehoj HS. Role of chicken IL-2 on γδ T-cells and Eimeria acervulina-induced changes in intestinal IL-2 mRNA expression and γδ T-cells. Vet Immunol Immunopathol. 2000;73(3–4):309–321. doi: 10.1016/S0165-2427(00)00148-3. PubMed DOI
Arstila TP, Lassila O. Androgen-induced expression of the peripheral blood gamma delta T cell population in the chicken. J Immunol. 1993;151(12):6627–6633. PubMed
Liu F, Li J, Lin IYC, Yang X, Ma J, Chen Y, Lv N, Shi Y, Gao GF, Zhu B. The genome resequencing of TCR loci in Gallus gallus revealed their distinct evolutionary features in Avians. ImmunoHorizons. 2020;4(1):33–46. doi: 10.4049/immunohorizons.1900095. PubMed DOI
Merelli I, Guffanti A, Fabbri M, Cocito A, Furia L, Grazini U, Bonnal RJ, Milanesi L, McBlane F. RSSsite: a reference database and prediction tool for the identification of cryptic recombination signal sequences in human and murine genomes. Nucleic Acids Res. 2010;38(Web Server):262–267. doi: 10.1093/nar/gkq391. PubMed DOI PMC
Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, Bucher P, Cerutti L, Corpet F, Croning MD, Durbin R, Falquet L, Fleischmann W, Gouzy J, Hermjakob H, Hulo N, Jonassen I, Kahn D, Kanapin A, Karavidopoulou Y, Lopez R, Marx B, Mulder NJ, Oinn TM, Pagni M, Servant F, Sigrist CJ, Zdobnov EM. The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res. 2001;29(1):37–40. doi: 10.1093/nar/29.1.37. PubMed DOI PMC
Smith DK, Xue H. Sequence profiles of immunoglobulin and immunoglobulin-like domains. J Mol Biol. 1997;274(4):530–545. doi: 10.1006/jmbi.1997.1432. PubMed DOI
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Andrews S. SeqMonk: a tool to visualise and analyse high throughput mapped sequence data [internet]. Babraham Bioinformatics. 2007; Available from: https://www.bioinformatics.babraham.ac.uk/projects/seqmonk/.
Lefranc M. IMGT [Internet] 2021.
Lefranc M. Ontology for immunogenetics : the IMGT-ONTOLOGY. Bioinformatics [Internet] 1999;15(12):1047–1054. doi: 10.1093/bioinformatics/15.12.1047. PubMed DOI
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Posada D, Crandall AC. MODELTEST: testing the model of DNA substitution David. Chaos. 1998;14(9):817–818. doi: 10.1093/bioinformatics/14.9.817. PubMed DOI
Gascuel O. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol. 1997;14(7):685–695. doi: 10.1093/oxfordjournals.molbev.a025808. PubMed DOI
Colwell RK, Chao A, Gotelli NJ, Lin SY, Mao CX, Chazdon RL, Longino JT. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol. 2012;5(1):3–21. doi: 10.1093/jpe/rtr044. DOI
Hsieh TC, Ma KH, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (hill numbers) Methods Ecol Evol. 2016;7(12):1451–1456. doi: 10.1111/2041-210X.12613. DOI
Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest Package: Tests in Linear Mixed Effects Models. J Stat Softw. 2017;82(13).
Six A, Rast JP, McCormack WT, Dunon D, Courtois D. Li Y, et al. Characterization of avian T-cell receptor γ genes. 1996;93(26):15329–15334. doi: 10.1073/pnas.93.26.15329. PubMed DOI PMC
Hayday AC. γδ T cell update: Adaptate orchestrators of immune surveillance. J Immunol. 2019;203(2):311–320. doi: 10.4049/jimmunol.1800934. PubMed DOI
Su C, Jakobsen I, Gu X, Nei M. Diversity and evolution of T-cell receptor variable region genes in mammals and birds. Immunogenetics. 1999;50(5–6):301–308. doi: 10.1007/s002510050606. PubMed DOI
Antonacci R, Massari S, Linguiti G, Jambrenghi AC, Giannico F, Lefranc MP, et al. Evolution of the T-cell receptor (TR) Loci in the adaptive immune response: The tale of the TRG locus in mammals. Genes (Basel). 2020;11(6). PubMed PMC
Yang Z, Sun Y, Ma Y, Li Z, Zhao Y, Ren L, Han H, Jiang Y, Zhao Y. A comprehensive analysis of the germline and expressed TCR repertoire in white Peking duck. Sci Rep. 2017;7(September 2016):1–13. doi: 10.1038/srep41426. PubMed DOI PMC
Kiemnec-Tyburczy KM, Richmond JQ, Savage AE, Lips KR, Zamudio KR. Genetic diversity of MHC class i loci in six non-model frogs is shaped by positive selection and gene duplication. Heredity (Edinb) 2012;109(3):146–155. doi: 10.1038/hdy.2012.22. PubMed DOI PMC
Peatman E, Liu Z. Evolution of CC chemokines in teleost fish: a case study in gene duplication and implications for immune diversity. Immunogenetics. 2007;59(8):613–623. doi: 10.1007/s00251-007-0228-4. PubMed DOI
Xiong N, Baker JE, Kang C, Raulet DH. The genomic arrangement of T cell receptor variable genes is a determinant of the developmental rearrangement pattern. Proc Natl Acad Sci U S A. 2004;101(1):260–265. doi: 10.1073/pnas.0303738101. PubMed DOI PMC
Migone N, Padovan S, Zappador C, Giachino C, Bottaro M, Matullo G, Carbonara C, de Libero G, Casorati G. Restriction of the T-cell receptor V delta gene repertoire is due to preferential rearrangement and is independent of antigen selection. Immunogenetics. 1995;42(5):323–332. doi: 10.1007/BF00179393. PubMed DOI
Tunyaplin C, Knight KL. Fetal VDJ gene repertoire in rabbit: evidence for preferential rearrangement of VH1. Eur J Immunol. 1995;25(9):2583–2587. doi: 10.1002/eji.1830250927. PubMed DOI
Guy-Grand D, Vassalli P, Eberl G, Pereira P, Burlen-Defranoux O, Lemaitre F, di Santo JP, Freitas AA, Cumano A, Bandeira A. Origin, trafficking, and intraepithelial fate of gut-tropic T cells. J Exp Med. 2013;210(9):1839–1854. doi: 10.1084/jem.20122588. PubMed DOI PMC
Vantourout P, Hayday A. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat Rev Immunol. 2013;13(2):88–100. doi: 10.1038/nri3384. PubMed DOI PMC
Di Marco BR, Roberts NA, Dart RJ, Vantourout P, Jandke A, Nussbaumer O, et al. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell. 2016;167(1):203–218.e17. doi: 10.1016/j.cell.2016.08.030. PubMed DOI PMC
Davey MS, Willcox CR, Hunter S, Kasatskaya SA, Remmerswaal EBM, Salim M, Mohammed F, Bemelman FJ, Chudakov DM, Oo YH, Willcox BE. The human Vδ2+ T-cell compartment comprises distinct innate-like Vγ9+ and adaptive Vγ9- subsets. Nat Commun. 2018;9(1):1–14. doi: 10.1038/s41467-018-04076-0. PubMed DOI PMC
Delfau M. H, Hance AJ, Lecossier D, Vilmer E, Grandchamp B. restricted diversity of Vγ9-JP rearrangements in unstimulated human γ/δ T lymphocytes. Eur J Immunol. 1992;22(9):2437–2443. doi: 10.1002/eji.1830220937. PubMed DOI
Willcox CR, Davey MS, Willcox BE. Development and selection of the human Vγ9Vδ2+ T-Cell Repertoire. Front Immunol. 2018;9(JUL):1–7. PubMed PMC
Dunon D, Cooper MD, Imhof BA. Thymic origin of embryonic intestinal γ/δ T cells. J Exp Med. 1993;177(2):257–263. doi: 10.1084/jem.177.2.257. PubMed DOI PMC
Chen CH, Göbel TW, Kubota T, Cooper MD. T cell development in the chicken. Poult Sci. 1994;73(7):1012–1018. doi: 10.3382/ps.0731012. PubMed DOI
Cihak J, Losch U, Hoffmann-Fezer G, Chen CH, Cooper MD, Ziegler-Heitbrock HWL. In vivo depletion of chicken T-cell subsets. Scand J Immunol. 1993;38(2):123–129. doi: 10.1111/j.1365-3083.1993.tb01702.x. PubMed DOI
Dunon D, Courtois D, Vainio O, Six A, Chen CH, Cooper MD, Dangy JP, Imhof BA. Ontogeny of the immune system: γ/δ and α/β T cells migrate from thymus to the periphery in alternating waves. J Exp Med. 1997;186(7):977–988. doi: 10.1084/jem.186.7.977. PubMed DOI PMC