Genome-wide homozygosity and risk of four non-Hodgkin lymphoma subtypes
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
HHSN268201100001I
NHLBI NIH HHS - United States
N01 PC067009
NCI NIH HHS - United States
HHSN268201100046C
NHLBI NIH HHS - United States
P30 ES000260
NIEHS NIH HHS - United States
P30 CA008748
NCI NIH HHS - United States
HHSN261201000034C
NCI NIH HHS - United States
P30 CA016087
NCI NIH HHS - United States
HHSN261201000140C
NCI NIH HHS - United States
N01 PC067010
NCI NIH HHS - United States
R01 CA098122
NCI NIH HHS - United States
U01 HG007033
NHGRI NIH HHS - United States
P01 CA087969
NCI NIH HHS - United States
HHSN261201000035C
NCI NIH HHS - United States
R01 CA134958
NCI NIH HHS - United States
R21 CA165923
NCI NIH HHS - United States
HHSN268201100004I
NHLBI NIH HHS - United States
P30 CA086862
NCI NIH HHS - United States
U01 CA167552
NCI NIH HHS - United States
N01 PC067008
NCI NIH HHS - United States
HHSN268201100003C
WHI NIH HHS - United States
R01 CA148690
NCI NIH HHS - United States
22015
Blood Cancer UK - United Kingdom
U58 DP000807
NCCDPHP CDC HHS - United States
HHSN261200800001C
NCI NIH HHS - United States
R01 CA154643
NCI NIH HHS - United States
R01 CA062006
NCI NIH HHS - United States
N01 PC065064
NCI NIH HHS - United States
K08 CA134919
NCI NIH HHS - United States
UL1 TR000135
NCATS NIH HHS - United States
HHSN271201100004C
NIA NIH HHS - United States
R01 CA098661
NCI NIH HHS - United States
UM1 CA186107
NCI NIH HHS - United States
HHSN268201100002C
WHI NIH HHS - United States
P30 CA015083
NCI NIH HHS - United States
R01 CA092153
NCI NIH HHS - United States
ZIA CP010136
Intramural NIH HHS - United States
HHSN261201000035I
NCI NIH HHS - United States
P50 CA097274
NCI NIH HHS - United States
HHSN268201100003I
NHLBI NIH HHS - United States
R01 CA049449
NCI NIH HHS - United States
HHSN268201100002I
NHLBI NIH HHS - United States
R01 CA200703
NCI NIH HHS - United States
N01CO12400
NCI NIH HHS - United States
U01 CA049449
NCI NIH HHS - United States
R01 CA149445
NCI NIH HHS - United States
001
World Health Organization - International
R01 CA134674
NCI NIH HHS - United States
HHSN261201000026C
NCI NIH HHS - United States
HHSN268201100001C
WHI NIH HHS - United States
HHSN268201100004C
WHI NIH HHS - United States
U01 CA118444
NCI NIH HHS - United States
HHSN261200800001E
NCI NIH HHS - United States
P30 CA042014
NCI NIH HHS - United States
PubMed
34622145
PubMed Central
PMC8494431
DOI
10.20517/jtgg.2021.08
Knihovny.cz E-zdroje
- Klíčová slova
- Non-Hodgkin lymphoma, chronic lymphocytic leukemia, diffuse large B-cell lymphoma, follicular lymphoma, homozygosity, marginal zone lymphoma,
- Publikační typ
- časopisecké články MeSH
AIM: Recessive genetic variation is thought to play a role in non-Hodgkin lymphoma (NHL) etiology. Runs of homozygosity (ROH), defined based on long, continuous segments of homozygous SNPs, can be used to estimate both measured and unmeasured recessive genetic variation. We sought to examine genome-wide homozygosity and NHL risk. METHODS: We used data from eight genome-wide association studies of four common NHL subtypes: 3061 chronic lymphocytic leukemia (CLL), 3814 diffuse large B-cell lymphoma (DLBCL), 2784 follicular lymphoma (FL), and 808 marginal zone lymphoma (MZL) cases, as well as 9374 controls. We examined the effect of homozygous variation on risk by: (1) estimating the fraction of the autosome containing runs of homozygosity (FROH); (2) calculating an inbreeding coefficient derived from the correlation among uniting gametes (F3); and (3) examining specific autosomal regions containing ROH. For each, we calculated beta coefficients and standard errors using logistic regression and combined estimates across studies using random-effects meta-analysis. RESULTS: We discovered positive associations between FROH and CLL (β = 21.1, SE = 4.41, P = 1.6 × 10-6) and FL (β = 11.4, SE = 5.82, P = 0.02) but not DLBCL (P = 1.0) or MZL (P = 0.91). For F3, we observed an association with CLL (β = 27.5, SE = 6.51, P = 2.4 × 10-5). We did not find evidence of associations with specific ROH, suggesting that the associations observed with FROH and F3 for CLL and FL risk were not driven by a single region of homozygosity. CONCLUSION: Our findings support the role of recessive genetic variation in the etiology of CLL and FL; additional research is needed to identify the specific loci associated with NHL risk.
Bill Lyons Informatics Centre UCL Cancer Institute University College London London WC1E 6DD UK
Cancer Control Research BC Cancer Agency Vancouver British Columbia V5Z1L3 Canada
Cancer Epidemiology Division Cancer Council Victoria Melbourne Victoria 3004 Australia
Cancer Epidemiology Unit University of Oxford Oxford OX3 7LF UK
Concord Clinical School University of Sydney Concord New South Wales 2139 Australia
Consortium for Biomedical Research in Epidemiology and Public Health Barcelona 08036 Spain
Department of Environmental Health Sciences Yale School of Public Health New Haven CT 06520 USA
Department of Epidemiology Brown University Providence RI 02903 USA
Department of Epidemiology Harvard T H Chan School of Public Health Boston MA 02115 USA
Department of Epidemiology University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
Department of Family Medicine and Public Health Sciences Wayne State University Detroit MI 48201 USA
Department of Health Sciences Research Mayo Clinic Rochester MN 55905 USA
Department of Health Sciences University of York York YO10 5DD UK
Department of Hematology Centre Léon Bérard Lyon 69008 France
Department of Hematology Hospices Civils de Lyon Pierre Benite Cedex 69495 France
Department of Hematology Université Lyon 1 Pierre Benite Cedex 69495 France
Department of Immunology Genetics and Pathology Uppsala University Uppsala 75105 Sweden
Department of Internal Medicine Mayo Clinic Rochester MN 55905 USA
Department of Medical and Surgical Sciences University of Bologna Bologna 41026 Italy
Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm 17176 Sweden
Department of Medicine Memorial Sloan Kettering Cancer Center New York NY 10065 USA
Department of Medicine Solna Karolinska Institutet Stockholm 17176 Sweden
Department of Medicine Stanford University School of Medicine Stanford CA 94305 USA
Department of Obstetrics and Gynecology New York University School of Medicine New York NY 10016 USA
Department of Population Health New York University School of Medicine New York NY 10016 USA
Department of Population Science American Cancer Society Atlanta GA 30303 USA
Division of Cancer Epidemiology and Genetics National Cancer Institute Bethesda MD 20892 USA
Division of Endocrinology Diabetes and Metabolism The Ohio State University Columbus OH 43210 USA
Division of Health Analytics City of Hope Beckman Research Institute Duarte CA 91010 USA
Division of Public Health Sciences Fred Hutchinson Cancer Research Center Seattle WA 98117 USA
Genome Sciences Centre BC Cancer Agency Vancouver British Columbia V5Z1L3 Canada
Genomic Epidemiology Group German Cancer Research Center Heidelberg 69120 Germany
Hematology Center Karolinska University Hospital Stockholm 17176 Sweden
INSERM U1052 Cancer Research Center of Lyon Centre Léon Bérard Lyon 69008 France
INSERM U1052 Cancer Research Center of Lyon Lyon 1 University Pierre Bénite Cedex 69008 France
Institute for Risk Assessment Sciences Utrecht University Utrecht 3584 CG The Netherlands
International Agency for Research on Cancer Lyon 69372 France
Perlmutter Comprehensive Cancer Center NYU Langone Health New York NY 10016 USA
Ragon Institute of MGH Cambridge MA 02139 USA
Registre des Hémopathies Malignes de la Gironde Institut Bergonié Bordeaux Cedex 33076 France
School of Nursing Psychotherapy and Community Health Dublin City University Dublin 9 Ireland
School of Public Health Imperial College London London W2 1PG UK
Stony Brook Cancer Center Stony Brook University Stony Brook NY 11794 USA
Zobrazit více v PubMed
Chatterjee N, Hartge P, Cerhan JR, et al. Risk of non-Hodgkin's lymphoma and family history of lymphatic, hematologic, and other cancers. Cancer Epidemiol Biomarkers Prev 2004;13:1415–21. PubMed
Chang ET, Smedby KE, Hjalgrim H, et al. Family history of hematopoietic malignancy and risk of lymphoma. J Natl Cancer Inst 2005;97:1466–74. PubMed
Wang SS, Slager SL, Brennan P, et al. Family history of hematopoietic malignancies and risk of non-Hodgkin lymphoma (NHL): a pooled analysis of 10 211 cases and 11 905 controls from the International Lymphoma Epidemiology Consortium (InterLymph). Blood 2007;109:3479–88. PubMed PMC
Goldin LR, Björkholm M, Kristinsson SY, Turesson I, Landgren O. Highly increased familial risks for specific lymphoma subtypes. Br J Haematol 2009;146:91–4. PubMed PMC
Altieri A, Bermejo JL, Hemminki K. Familial risk for non-Hodgkin lymphoma and other lymphoproliferative malignancies by histopathologic subtype: the Swedish Family-Cancer Database. Blood 2005;106:668–72. PubMed
Berndt SI, Camp NJ, Skibola CF, et al. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia. Nat Commun 2016;7:10933. PubMed PMC
Berndt SI, Skibola CF, Joseph V, et al. Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia. Nat Genet 2013;45:868–76. PubMed PMC
Cerhan JR, Berndt SI, Vijai J, et al. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma. Nat Genet 2014;46:1233–8. PubMed PMC
Law PJ, Berndt SI, Speedy HE, et al. Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia. Nat Commun 2017;8:14175. PubMed PMC
Skibola CF, Berndt SI, Vijai J, et al. Genome-wide association study identifies five susceptibility loci for follicular lymphoma outside the HLA region. Am J Hum Genet 2014;95:462–71. PubMed PMC
Vijai J, Wang Z, Berndt SI, et al. A genome-wide association study of marginal zone lymphoma shows association to the HLA region. Nat Commun 2015;6:5751. PubMed PMC
Lettre G, Lange C, Hirschhorn JN. Genetic model testing and statistical power in population-based association studies of quantitative traits. Genet Epidemiol 2007;31:358–62. PubMed
Gibson J, Morton NE, Collins A. Extended tracts of homozygosity in outbred human populations. Hum Mol Genet 2006;15:789–95. PubMed
Pemberton TJ, Absher D, Feldman MW, Myers RM, Rosenberg NA, Li JZ. Genomic patterns of homozygosity in worldwide human populations. Am J Hum Genet 2012;91:275–92. PubMed PMC
Keller MC, Visscher PM, Goddard ME. Quantification of inbreeding due to distant ancestors and its detection using dense single nucleotide polymorphism data. Genetics 2011;189:237–49. PubMed PMC
Szpiech ZA, Xu J, Pemberton TJ, et al. Long runs of homozygosity are enriched for deleterious variation. Am J Hum Genet 2013;93:90–102. PubMed PMC
Enciso-Mora V, Hosking FJ, Houlston RS. Risk of breast and prostate cancer is not associated with increased homozygosity in outbred populations. Eur J Hum Genet 2010;18:909–14. PubMed PMC
Spain SL, Cazier JB, Houlston R, Carvajal-Carmona L, Tomlinson I; CORGI Consortium. Colorectal cancer risk is not associated with increased levels of homozygosity in a population from the United Kingdom. Cancer Res 2009;69:7422–9. PubMed
Hosking FJ, Papaemmanuil E, Sheridan E, et al. Genome-wide homozygosity signatures and childhood acute lymphoblastic leukemia risk. Blood 2010;115:4472–7. PubMed
Thomsen H, Inacio da Silva Filho M, Fuchs M, et al. Evidence of inbreeding in Hodgkin lymphoma. PLoS One 2016;11:e0154259. PubMed PMC
Sud A, Cooke R, Swerdlow AJ, Houlston RS. Genome-wide homozygosity signature and risk of Hodgkin lymphoma. Sci Rep 2015;5:14315. PubMed PMC
Joshi PK, Esko T, Mattsson H, et al. Directional dominance on stature and cognition in diverse human populations. Nature 2015;523:459–62. PubMed PMC
Conde L, Halperin E, Akers NK, et al. Genome-wide association study of follicular lymphoma identifies a risk locus at 6p21.32. Nat Genet 2010;42:661–4. PubMed PMC
Vivo I, Prescott J, Setiawan VW, et al.; Australian National Endometrial Cancer Study Group. Genome-wide association study of endometrial cancer in E2C2. Hum Genet 2014;133:211–24. PubMed PMC
Smedby KE, Foo JN, Skibola CF, et al. GWAS of follicular lymphoma reveals allelic heterogeneity at 6p21.32 and suggests shared genetic susceptibility with diffuse large B-cell lymphoma. PLoS Genet 2011;7:e1001378. PubMed PMC
Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 2015;4:7. PubMed PMC
Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559–75. PubMed PMC
Gazal S, Sahbatou M, Perdry H, Letort S, Génin E, Leutenegger AL. Inbreeding coefficient estimation with dense SNP data: comparison of strategies and application to HapMap III. Hum Hered 2014;77:49–62. PubMed
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 2011;88:76–82. PubMed PMC
Yengo L, Zhu Z, Wray NR, et al. Detection and quantification of inbreeding depression for complex traits from SNP data. Proc Natl Acad Sci U S A 2017;114:8602–7. PubMed PMC
Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010;26:2190–1. PubMed PMC
Edelmann J, Holzmann K, Miller F, et al. High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations. Blood 2012;120:4783–94. PubMed
Puiggros A, Blanco G, Espinet B. Genetic abnormalities in chronic lymphocytic leukemia: where we are and where we go. Biomed Res Int 2014;2014:435983. PubMed PMC
Goldin LR, Björkholm M, Kristinsson SY, Turesson I, Landgren O. Elevated risk of chronic lymphocytic leukemia and other indolent non-Hodgkin's lymphomas among relatives of patients with chronic lymphocytic leukemia. Haematologica 2009;94:647–53. PubMed PMC
Malek SN. The biology and clinical significance of acquired genomic copy number aberrations and recurrent gene mutations in chronic lymphocytic leukemia. Oncogene 2013;32:2805–17. PubMed PMC
Rawstron AC, Bennett FL, O'Connor SJ, et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med 2008;359:575–83. PubMed
Valentino T, Palmieri D, Vitiello M, Pierantoni GM, Fusco A, Fedele M. PATZ1 interacts with p53 and regulates expression of p53-target genes enhancing apoptosis or cell survival based on the cellular context. Cell Death Dis 2013;4:e963. PubMed PMC
Chen Y, Wang J, Wang X, et al. Pik3ip1 is a negative immune regulator that inhibits antitumor T-cell immunity. Clin Cancer Res 2019;25:6180–94. PubMed
Paulucci BP, Pereira J, Picciarelli P, Levy D, di Francesco RC. Expression of CysLTR1 and 2 in maturating lymphocytes of hyperplasic tonsils compared to peripheral cells in children. Inflammation 2016;39:1216–24. PubMed
Linet MS, Vajdic CM, Morton LM, et al. Medical history, lifestyle, family history, and occupational risk factors for follicular lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr 2014;2014:26–40. PubMed PMC
Wang SS, Carrington M, Berndt SI, et al. HLA Class I and II diversity contributes to the etiologic heterogeneity of non-Hodgkin lymphoma subtypes. Cancer Res 2018;78:4086–96. PubMed PMC
Cerhan JR, Kricker A, Paltiel O, et al. Medical history, lifestyle, family history, and occupational risk factors for diffuse large B-cell lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr 2014;2014:15–25. PubMed PMC
Howrigan DP, Simonson MA, Keller MC. Detecting autozygosity through runs of homozygosity: a comparison of three autozygosity detection algorithms. BMC Genomics 2011;12:460. PubMed PMC
Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000;403:503–11. PubMed
Monti S, Savage KJ, Kutok JL, et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 2005;105:1851–61. PubMed
Bracci PM, Benavente Y, Turner JJ, et al. Medical history, lifestyle, family history, and occupational risk factors for marginal zone lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr 2014;2014:52–65. PubMed PMC
Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Geneva: IARC Press; 2008.
McQuillan R, Leutenegger AL, Abdel-Rahman R, et al. Runs of homozygosity in European populations. Am J Hum Genet 2008;83:359–72. PubMed PMC