Elevated Circulating Stem Cells Level is Observed One Month After Implantation of Carmat Bioprosthetic Total Artificial Heart
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34622384
DOI
10.1007/s12015-021-10270-3
PII: 10.1007/s12015-021-10270-3
Knihovny.cz E-resources
- Keywords
- Aeson, Endothelial progenitors, Mobilization, Stem cells, Total artificial heart, Transplantation,
- MeSH
- Antigens, CD34 MeSH
- Adult MeSH
- Endothelial Cells * MeSH
- Stem Cells MeSH
- Leukocytes, Mononuclear MeSH
- Humans MeSH
- Heart, Artificial * MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens, CD34 MeSH
The Aeson® total artificial heart (A-TAH) has been developed as a total heart replacement for patients at risk of death from biventricular failure. We previously described endothelialization of the hybrid membrane inside A-TAH probably at the origin of acquired hemocompatibility. We aimed to quantify vasculogenic stem cells in peripheral blood of patients with long-term A-TAH implantation. Four male adult patients were included in this study. Peripheral blood mononuclear cells were collected before A-TAH implantation (T0) and after implantation at one month (T1), between two and five months (T2), and then between six and twelve months (T3). Supervised analysis of flow cytometry data confirmed the presence of the previously identified Lin-CD133+CD45- and Lin-CD34+ with different CD45 level intensities. Lin-CD133+CD45-, Lin-CD34+CD45- and Lin-CD34+CD45+ were not modulated after A-TAH implantation. However, we demonstrated a significant mobilization of Lin-CD34+CD45dim (p = 0.01) one month after A-TAH implantation regardless of the expression of CD133 or c-Kit. We then visualized data for the resulting clusters on a uniform manifold approximation and projection (UMAP) plot showing all single cells of the live Lin- and CD34+ events selected from down sampled files concatenated at T0 and T1. The three clusters upregulated at T1 are CD45dim clusters, confirming our results. In conclusion, using a flow cytometry approach, we demonstrated in A-TAH-transplanted patients a significant mobilization of Lin-CD34+CD45dim in peripheral blood one month after A-TAH implantation. Using a flow cytometry approach, we demonstrated in A-TAH transplanted patients a significant mobilization of Lin-CD34+CD45dim in peripheral blood one month after A-TAH implantation. This cell population could be at the origin of newly formed endothelial cells on top of hybrid membrane in Carmat bioprosthetic total artificial heart.
Carmat SA Vélizy Villacoublay France
Hematology and Biosurgical Research Lab AP HP Georges Pompidou European Hospital 75015 Paris France
Innovative Therapies in Haemostasis INSERM Université de Paris 75006 Paris France
Institut Curie Cytometry Platform 75006 Paris France
PARCC INSERM Université de Paris 75015 Paris France
Vascular Medicine Department and Georges Pompidou European Hospital AP HP 75015 Paris France
See more in PubMed
Han, J. J. (2021). Aeson-The Carmat total artificial heart is approved for enrollment in the United States. Artificial Organs, 45(5), 445–446. DOI
Carpentier, A., Latremouille, C., Cholley, B., Smadja, D. M., Roussel, J. C., Boissier, E., et al. (2015). First clinical use of a bioprosthetic total artificial heart: Report of two cases. Lancet, 386(10003), 1556–1563. DOI
Richez, U., De Castilla, H., Guerin, C. L., Gendron, N., Luraghi, G., Grimme, M., et al. (2019). Hemocompatibility and safety of the Carmat Total Artifical Heart hybrid membrane. Heliyon, 5(12), e02914. DOI
Carpentier, A. (2007). Lasker Clinical Research Award. The surprising rise of nonthrombogenic valvular surgery. Nature Medicine, 13(10), 1165–8. DOI
Latremouille, C., Carpentier, A., Leprince, P., Roussel, J. C., Cholley, B., Boissier, E., et al. (2018). A bioprosthetic total artificial heart for end-stage heart failure: Results from a pilot study. Journal of Heart and Lung Transplantation, 37(1), 33–37. DOI
Netuka, I., Pya, Y., Bekbossynova, M., Ivak, P., Konarik, M., Gustafsson, F., et al. (2020). Initial bridge to transplant experience with a bioprosthetic autoregulated artificial heart. The Journal of Heart and Lung Transplantation
Smadja, D. M., Saubamea, B., Susen, S., Kindo, M., Bruneval, P., Van Belle, E., et al. (2017). Bioprosthetic Total Artificial Heart Induces a Profile of Acquired Hemocompatibility With Membranes Recellularization. Journal of the American College of Cardiology, 70(3), 404–406. DOI
Smadja, D. M., Melero-Martin, J. M., Eikenboom, J., Bowman, M., Sabatier, F., & Randi, A. M. (2019). Standardization of methods to quantify and culture endothelial colony-forming cells derived from peripheral blood: Position paper from the International Society on Thrombosis and Haemostasis SSC. Journal of Thrombosis and Haemostasis, 17(7), 1190–1194. DOI
Yoder, M. C., Mead, L. E., Prater, D., Krier, T. R., Mroueh, K. N., Li, F., et al. (2007). Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood, 109(5), 1801–1809. DOI
Rigato, M., Avogaro, A., & Fadini, G. P. (2016). Levels of Circulating Progenitor Cells, Cardiovascular Outcomes and Death: A Meta-Analysis of Prospective Observational Studies. Circulation Research, 118(12), 1930–1939. DOI
Guerin, C. L., Guyonnet, L., Goudot, G., Revets, D., Konstantinou, M., Chipont, A., et al. (2020). Multidimensional Proteomic Approach of Endothelial Progenitors Demonstrate Expression of KDR Restricted to CD19 Cells. Stem Cell Reviews and Reports. In press
Henon, P. (2020). Key Success Factors for Regenerative Medicine in Acquired Heart Diseases. Stem Cell Reviews and Reports, 16(3), 441–458. DOI
Lahlil, R., Scrofani, M., Barbet, R., Tancredi, C., Aries, A., & Henon, P. (2018). VSELs Maintain their Pluripotency and Competence to Differentiate after Enhanced Ex Vivo Expansion. Stem Cell Reviews and Reports, 14(4), 510–524. DOI
Ratajczak, M. Z., Ratajczak, J., & Kucia, M. (2019). Very Small Embryonic-Like Stem Cells (VSELs). Circulation Research, 124(2), 208–210. DOI
Guerin, C. L., Loyer, X., Vilar, J., Cras, A., Mirault, T., Gaussem, P., et al. (2015). Bone-marrow-derived very small embryonic-like stem cells in patients with critical leg ischaemia: Evidence of vasculogenic potential. Thrombosis and Haemostasis, 113(5), 1084–1094. DOI
Guerin, C. L., Rossi, E., Saubamea, B., Cras, A., Mignon, V., Silvestre, J. S., et al. (2017). Human very Small Embryonic-like Cells Support Vascular Maturation and Therapeutic Revascularization Induced by Endothelial Progenitor Cells. Stem Cell Reviews and Reports, 13(4), 552–560. DOI
Becht, E., McInnes, L., Healy, J., Dutertre, C. A., Kwok, I. W. H., Ng, L. G., et al. (2019). Dimensionality reduction for visualizing single-cell data using UMAP. Nature Biotechnology
Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829), 701–705. DOI
Murry, C. E., Soonpaa, M. H., Reinecke, H., Nakajima, H., Nakajima, H. O., Rubart, M., et al. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 428(6983), 664–668. DOI
Tasev, D., Konijnenberg, L. S., Amado-Azevedo, J., van Wijhe, M. H., Koolwijk, P., & van Hinsbergh, V. W. (2016). CD34 expression modulates tube-forming capacity and barrier properties of peripheral blood-derived endothelial colony-forming cells (ECFCs). Angiogenesis, 19(3), 325–338. DOI
Timmermans, F., Van Hauwermeiren, F., De Smedt, M., Raedt, R., Plasschaert, F., De Buyzere, M. L., et al. (2007). Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(7), 1572–1579. DOI
Case, J., Mead, L. E., Bessler, W. K., Prater, D., White, H. A., Saadatzadeh, M. R., et al. (2007). Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Experimental Hematology, 35(7), 1109–1118. DOI
Abdel-Latif, A., Zuba-Surma, E. K., Ziada, K. M., Kucia, M., Cohen, D. A., Kaplan, A. M., et al. (2010). Evidence of mobilization of pluripotent stem cells into peripheral blood of patients with myocardial ischemia. Experimental Hematology, 38(12), 1131–42 e1. DOI
Havens, A. M., Sun, H., Shiozawa, Y., Jung, Y., Wang, J., Mishra, A., et al. (2014). Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo. Stem Cells and Development, 23(7), 689–701. DOI
Wu, J. H., Wang, H. J., Tan, Y. Z., & Li, Z. H. (2012). Characterization of rat very small embryonic-like stem cells and cardiac repair after cell transplantation for myocardial infarction. Stem Cells and Development, 21(8), 1367–1379. DOI
Zhang, S., Zhao, L., Wang, J., Chen, N., Yan, J., & Pan, X. (2017). HIF-2alpha and Oct4 have synergistic effects on survival and myocardial repair of very small embryonic-like mesenchymal stem cells in infarcted hearts. Cell Death & Disease, 8(1), e2548. DOI
Lahlil, R., Scrofani, M., Barbet, R., Tancredi, C., Aries, A., & Henon, P. (2018). VSELs Maintain their Pluripotency and Competence to Differentiate after Enhanced Ex Vivo Expansion. Stem Cell Reviews, 14(4), 510–524. DOI