The steroid-inducible pOp6/LhGR gene expression system is fast, sensitive and does not cause plant growth defects in rice (Oryza sativa)
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
34627147
PubMed Central
PMC8501728
DOI
10.1186/s12870-021-03241-w
PII: 10.1186/s12870-021-03241-w
Knihovny.cz E-zdroje
- Klíčová slova
- Chemically inducible gene expression, Dexamethasone, GVG, Glucocorticoid, Monocots, Promotor, XVE,
- MeSH
- dexamethason metabolismus MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- rostlinné geny MeSH
- rýže (rod) genetika růst a vývoj metabolismus MeSH
- transgeny MeSH
- vývoj rostlin účinky léků genetika MeSH
- zemědělské plodiny genetika růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dexamethason MeSH
Inducible systems for transgene expression activated by a chemical inducer or an inducer of non-plant origin are desirable tools for both basic plant research and biotechnology. Although, the technology has been widely exploited in dicotyledonous model plants such as Arabidopsis, it has not been optimised for use with the monocotyledonous model species, namely rice. We have adapted the dexamethasone-inducible pOp6/LhGR system for rice and the results indicated that it is fast, sensitive and tightly regulated, with high levels of induction that remain stable over several generations. Most importantly, we have shown that the system does not cause negative growth defects in vitro or in soil grown plants. Interestingly in the process of testing, we found that another steroid, triamcinolone acetonide, is a more potent inducer in rice than dexamethasone. We present serious considerations for the construct design to avoid undesirable effects caused by the system in plants, leakiness and possible silencing, as well as simple steps to maximize translation efficiency of a gene of interest. Finally, we compare the performance of the pOp6/LhGR system with other chemically inducible systems tested in rice in terms of the properties of an ideal inducible system.
Zobrazit více v PubMed
Abranches R, Shultz RW, Thompson WF, Allen GC. Matrix attachment regions and regulated transcription increase and stabilize transgene expression. Plant Biotechnol J. 2005;3:535–543. doi: 10.1111/j.1467-7652.2005.00144.x. PubMed DOI
Amirsadeghi S, McDonald AE, Vanlerberghe CC. A glucocorticoid-inducible gene expression system can cause growth defects in tobacco. Planta. 2009;226:453–463. doi: 10.1007/s00425-007-0495-1. PubMed DOI
Andersen SU, Cvitanich C, Hougaard BK, Roussis A, Gronlund M, Jensen DB, Frokjaer LA, Jensen EO. The glucocorticoid-inducible GVG system causes severe growth defects in both root and shoot of the model legume Lotus japonicus. Mol Plant-Microbe Interact. 2003;16:1069–1076. doi: 10.1094/MPMI.2003.16.12.1069. PubMed DOI
Aoyama T, Chua N-H. A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J. 1977;11:605–612. doi: 10.1046/j.1365-313X.1997.11030605.x. PubMed DOI
Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA, Yang W, Mayer JE, Roa-Rodríguez C, Jefferson RA. Gene transfer to plants by diverse species of bacteria. Nature. 2005;433:629–633. doi: 10.1038/nature03309. PubMed DOI
Caddick MX, Greenland AJ, Jepson I, Krause K-P, Qu N, Riddell KV, Salter MG, Schuch W, Sonnewald U, Tomsett AB. An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nat Biotechnol. 1998;16:177–180. doi: 10.1038/nbt0298-177. PubMed DOI
Chen ZJ, Cheng QQ, Hu CQ, Guo XR, Chen ZQ, Lin Y, Hu TJ, Bellizzi M, Lu GD, Wang GL, Wang ZH, Chen SB, Wang ZH. A chemical-induced, seed-soaking sctivation procedure for regulated gene expression in rice. Front Plant Sci. 2017;8:1447. doi: 10.3389/fpls.2017.01447. PubMed DOI PMC
Chern M, Bai W, Chen X, Canlas PE, Ronald PC. Reduced expression of glycolate oxidase leads to enhanced disease resistance in rice. Peer J. 2013;1:e28. doi: 10.7717/peerj.28. PubMed DOI PMC
Craft J, Samalova M, Baroux C, Townley H, Martinez A, Jepson I, Tsiantis M, Moore I. New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. Plant J. 2005;41:899–918. doi: 10.1111/j.1365-313X.2005.02342.x. PubMed DOI
Corrado G, Karali M. Inducible gene expression systems and plant biotechnology. Biotechnol Adv. 2009;27:733–743. doi: 10.1016/j.biotechadv.2009.05.006. PubMed DOI
Du DX, Jin RC, Guo JJ, Zhang FD. Construction of marker-free genetically modified maize using a heat-inducible auto-excision vector. Genes. 2019;10:374. doi: 10.3390/genes10050374. PubMed DOI PMC
Eva C, Teglas F, Zelenyanszki H, Tamas C, Juhasz A, Meszaros K, Tamas L. Cold inducible promoter driven Cre-lox system proved to be highly efficient for marker gene excision in transgenic barley. J Biotechnol. 2018;265:15–24. doi: 10.1016/j.jbiotec.2017.10.016. PubMed DOI
Goh H-H, Sloan J, Dorca-Fornell C, Fleming A. Inducible repression of multiple expansin genes leads to growth suppression during leaf development. Plant Physiol. 2012;159:1759–1770. doi: 10.1104/pp.112.200881. PubMed DOI PMC
Helliwell EE, Wang Q, Yang Y. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. Plant Biotechnol J. 2013;11:33–42. doi: 10.1111/pbi.12004. PubMed DOI
Hirose T, Mizutani R, Mitsui T, Terao T. A chemically inducible gene expression system and its application to inducible gene suppression in rice. Plant Prod Sci. 2012;15:73–78. doi: 10.1626/pps.15.73. DOI
Honma Y, Yamakawa T. High expression of GUS activities in sweet potato storage roots by sucrose-inducible minimal promoter. Plant Cell Rep. 2019;38:SI 1417–SI 1426. doi: 10.1007/s00299-019-02453-7. PubMed DOI
Jefferson RA. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Report. 1987;5:387–405. doi: 10.1007/BF02667740. DOI
Jefferson RA, Kilian A, Wilson KJ, Keese PK. Microbial β-glucuronidase genes, gene products and uses thereof. US Patent. 2003;391:547.
Ji X, Si XM, Zhang Y, Zhang HW, Zhang F, Gao CX. Conferring DNA virus resistance with high specificity in plants using virus-inducible genome-editing system. Genome Biol. 2018;19:197. doi: 10.1186/s13059-018-1580-4. PubMed DOI PMC
Jiang WZ, Zhou HB, Bi HH, Fromm M, Yang B, Weeks DP. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 2013;41:e188. doi: 10.1093/nar/gkt780. PubMed DOI PMC
Kang HG, Fang Y, Singh KB. A glucocorticoid-inducible transcription system causes severe growth defects in Arabidopsis and induces defense-related genes. Plant J. 1999;20:127–133. doi: 10.1046/j.1365-313X.1999.00575.x. PubMed DOI
Khattri A, Nandy S, Srivastava V. Heat-inducible Cre-lox system for marker excision in transgenic rice. J Biosci. 2011;36:37–42. doi: 10.1007/s12038-011-9010-8. PubMed DOI
Kim CM, Dolan L. ROOT HAIR DEFECTIVE SIX-LIKE class I genes promote root hair development in the grass Brachypodium distachyon. PLoS Genet. 2016;12:e1006211. doi: 10.1371/journal.pgen.1006211. PubMed DOI PMC
Koo JC, Asurmendi S, Bick J, Woodford-Thomas T, Beachy RN. Ecdysone agonist-inducible expression of a coat protein gene from tobacco mosaic virus confers viral resistance in transgenic Arabidopsis. Plant J. 2004;37:439–448. doi: 10.1046/j.1365-313X.2003.01869.x. PubMed DOI
Kopertekh L, Krebs E, Guzmann F. Improvement of conditional Cre-lox system through application of the regulatory sequences from cowpea mosaic virus. Plant Biotechnol Rep. 2018;12:127–137. doi: 10.1007/s11816-018-0477-8. DOI
Koziel MG, Carozzi NB, Desai N. Optimizing expression of transgenes with an emphasis on post-transcriptional events. Plant Mol Biol. 1996;32:392–405. doi: 10.1007/BF00039392. PubMed DOI
Liu SM, Yoder JI. Chemical induction of hairpin RNAi molecules to silence vital genes in plant roots. Sci Rep. 2016;6:37711. doi: 10.1038/srep37711. PubMed DOI PMC
Meszaros K, Eva C, Kiss T, Banyai J, Kiss E, Teglas F, Lang L, Karsai I, Tamas L. Generating marker-free transgenic wheat using minimal gene cassette and cold-inducible Cre/lox system. Plant Mol Biol Report. 2015;33:1221–1231. doi: 10.1007/s11105-014-0830-1. DOI
Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh Y, Katayose Y, Nakamura S, Honkura R, Nishimiya S, Ueno K, Mochizuki A, Tanimoto H, Tsugawa H, Otsuki Y, Ohashi Y. Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol. 1996;37:49–59. doi: 10.1093/oxfordjournals.pcp.a028913. PubMed DOI
Moore I, Samalova M, Kurup S. Transactivated and chemically inducible gene expression in plants. Plant J. 2006;45:651–683. doi: 10.1111/j.1365-313X.2006.02660.x. PubMed DOI
Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue. Physiol Plant. 1962;15:493–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI
Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 2007;51:617–630. doi: 10.1111/j.1365-313X.2007.03168.x. PubMed DOI
Nakayama A, Fukushima S, Goto S, Matsushita A, Shimono M, Sugano S, Jiang C-J, Akagi A, Yamazaki M, Inoue H, Takatsuji H. Genome-wide identification of WRKY45-regulated genes that mediate benzothiadiazole-induced defense responses in rice. BMC Plant Biol. 2013;13:150. doi: 10.1186/1471-2229-13-150. PubMed DOI PMC
Nandy S, Pathak B, Zhao S, Srivastava V. Heat-shock-inducible CRISPR/Cas9 system generates heritable mutations in rice. Plant Direct. 2019;3:UNSP145. doi: 10.1002/pld3.145. PubMed DOI PMC
Okuzaki A, Konagaya K-I, Nanasato Y, Tsuda M, Tabei Y. Estrogen-inducible GFP expression patterns in rice (Oryza sativa L.) Plant Cell Rep. 2011;30:529–538. doi: 10.1007/s00299-010-0963-0. PubMed DOI PMC
Onodera H, Shingu S, Ohnuma M, Horie T, Kihira M, Kusano H, Teramura H, Shimada H. Establishment of a conditional TALEN system using the translational enhancer dMac3 and an inducible promoter activated by glucocorticoid treatment to increase the frequency of targeted mutagenesis in plants. PLoS One. 2018;13:e0208959. doi: 10.1371/journal.pone.0208959. PubMed DOI PMC
Ouwerkerk PBF, de Kam RJ, Hodge JHC, Meijer AH. Glucocorticoid-inducible gene expression in rice. Planta. 2001;213:370–378. doi: 10.1007/s004250100583. PubMed DOI
Padidam M, Gore M, Lu DL, Smirnova O. Chemical-inducible, ecdysone receptor-based gene expression system for plants. Transgenic Res. 2003;12:101–109. doi: 10.1023/A:1022113817892. PubMed DOI
Park C-J, Canlas PE, Ronald PC. Establishment of glucocorticoid-mediated transcriptional induction of the rice Xa21 pattern recognition receptor. J Plant Biol. 2012;55:43–49. doi: 10.1007/s12374-011-9188-1. DOI
Qu S, Jeon J-S, Ouwerkerk PBF, Bellizzi M, Leach J, Ronald P, Wang G-L. Construction and application of efficient ac-ds transposon tagging vectors in rice. J Integr Plant Biol. 2009;51:982–992. doi: 10.1111/j.1744-7909.2009.00870.x. PubMed DOI
Quilis J, Lopez-Garcia B, Meynard D, Guiderdoni E, San SB. Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. Plant Biotechnol J. 2014;12:367–377. doi: 10.1111/pbi.12143. PubMed DOI
Rerksiri W, Zhang X, Xiong H, Chen X. Expression and promoter analysis of six heat stress-inducible genes in rice. Sci World J. 2013;2013:397–401. PubMed PMC
Rose AB. The effect of intron location on intron-mediated enhancement of gene expression in Arabidopsis. Plant J. 2004;40:744–751. doi: 10.1111/j.1365-313X.2004.02247.x. PubMed DOI
Roslan HA, Salter MG, Wood CD, White MRH, Croft KP, Robson F, Coupland G, Doonan J, Laufs P, Tomsett AB, Caddick MX. Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant J. 2001;28:225–235. doi: 10.1046/j.1365-313X.2001.01146.x. PubMed DOI
Rossignol P, Orbovic V, Irish VF. A dexamethasone-inducible gene expression system is active in citrus plants. Sci Hortic. 2014;172:47–53. doi: 10.1016/j.scienta.2014.02.041. DOI
Rutherford S, Brandizzi F, Townley H, Craft J, Wang Y, Jepson I, Martinez A, Moore I. Improved transcriptional activators and their use in mis-expression traps in Arabidopsis. Plant J. 2005;43:769–788. doi: 10.1111/j.1365-313X.2005.02486.x. PubMed DOI
Salter MG, Paine JA, Riddell KV, Jepson I, Greenland AJ, Caddick M, Tomsett AB. Characterisation of the ethanol-inducible alc gene expression system for transgenic plants. Plant J. 1998;16:127–132. doi: 10.1046/j.1365-313x.1998.00281.x. DOI
Samalova M, Brzobohaty B, Moore I. pOp6/LhGR: a stringently regulated and highly responsive dexamethasone-inducible gene expression system for tobacco. Plant J. 2005;41:919–935. doi: 10.1111/j.1365-313X.2005.02341.x. PubMed DOI
Samalova M, Kirchhelle C, Moore I. Universal methods for transgene induction using the dexamethasone-inducible transcription activation system pOp6/LhGR in Arabidopsis and other plant species. Curr Protoc Plant Biol. 2019;4:e20089. PubMed
Samalova M, Elsayad K, Melnikava A, Peaucelle A, Gahurova E, Gumulec J, Spyroglou I, Zemlyanskaya EV, Ubogoeva EV, Hejatko J. Expansin-controlled cell wall stiffness regulates root growth in Arabidopsis. bioRxiv 2020;2020.06.25.170969.
Schubert D, Lechtenberg B, Forsbach A, Gils M, Bahadur S, Schmidt R. Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene specific RNA sensing mechanism versus position effects. Plant Cell. 2004;16:2561–2572. doi: 10.1105/tpc.104.024547. PubMed DOI PMC
Schurholz AK, Lopez-Salmeron V, Li ZN, Forner J, Wenzl C, Gaillochet C, Augustin S, Barro AV, Fuchs M, Gebert M, Lohmann JU, Greb T, Wolf S. A comprehensive toolkit for inducible, cell type-specific gene expression in Arabidopsis. Plant Physiol. 2018;178:40–53. doi: 10.1104/pp.18.00463. PubMed DOI PMC
Segal G, Song R, Messing J. A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics. 2003;165:387–397. doi: 10.1093/genetics/165.1.387. PubMed DOI PMC
Siligato R, Wang X, Yadav SR, Lehesranta S, Ma GJ, Ursache R, Sevilem I, Zhang J, Gorte M, Prasad K, Wrzaczek M, Heidstra R, Murphy A, Scheres B, Mahonen AP. Multisite gateway-compatible cell type-specific gene-inducible system for plants. Plant Physiol. 2016;170:627–641. doi: 10.1104/pp.15.01246. PubMed DOI PMC
Sreekala C, Wu L, Gu K, Wang D, Tian D, Yin Z. Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system. Plant Cell Rep. 2005;24:86–94. doi: 10.1007/s00299-004-0909-5. PubMed DOI
Sun F, Qi W, Qian X, Wang Q, Yang M, Dong X, Yang J. Investigating the role of OsPDCD5, a homolog of the mammalian PDCD5, in programmed cell death by inducible expression in rice. Plant Mol Biol Report. 2012;30:87–98. doi: 10.1007/s11105-011-0307-4. DOI
Timerbaev V, Dolgov S. Functional characterization of a strong promoter of the early light-inducible protein gene from tomato. Planta. 2019;250:1307–1323. doi: 10.1007/s00425-019-03227-x. PubMed DOI
Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H. Early infection of scutellum tissue with agrobacterium allows high-speed transformation of rice. Plant J. 2006;47:969–976. doi: 10.1111/j.1365-313X.2006.02836.x. PubMed DOI
Vlad D, Abu-Jamous B, Wang P, Langdale J. A modular steroid-inducible gene expression system for use in rice. BMC Plant Biol. 2019;19:426. doi: 10.1186/s12870-019-2038-x. PubMed DOI PMC
Wang X, Ye L, Lyu M, Ursache R, Loytynoja A, Mahonen AP. Aa inducible genome editing system for plants. Nat Plants. 2020;6:766–772. doi: 10.1038/s41477-020-0695-2. PubMed DOI PMC
Wielopolska A, Townley H, Moore I, Waterhouse P, Helliwell C. A high-throughput inducible RNAi vector for plants. Plant Biotechnol J. 2005;3:583–590. doi: 10.1111/j.1467-7652.2005.00149.x. PubMed DOI
Woo HJ, Qin Y, Park SY, Park SK, Cho YG, Shin KS, Lim MH, Cho HS. Development of selectable marker-free transgenic rice plants with enhanced seed tocopherol content through FLP/FRT-mediated spontaneous auto-excision. PLoS One. 2015;10:e0132667. doi: 10.1371/journal.pone.0132667. PubMed DOI PMC
Wu CY, Li XJ, Yuan WY, Chen GX, Kilian A, Li J, Xu C, Li XH, Zhou DX, Wang S, Zhang Q. Development of enhancer trap lines for functional analysis of the rice genome. Plant J. 2003;35:418–427. doi: 10.1046/j.1365-313X.2003.01808.x. PubMed DOI
Yoo SY, Bomblies K, Yoo SK, Yang JW, Choi MS, Lee JS, Weigel D, Ahn JH. The 35S promoter used in a selectable marker gene of a plant transformation vector affects the expression of the transgene. Planta. 2005;221:523–530. doi: 10.1007/s00425-004-1466-4. PubMed DOI
Zhang H, Zhang JS, Wei PL, Zhang BT, Gou F, Feng ZY, Mao YF, Yang L, Zhang H, Xu NF, Zhu JK. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J. 2014;12:797–807. doi: 10.1111/pbi.12200. PubMed DOI
Zuo J, Niu Q-W, Chua N-H. An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 2000;24:265–273. doi: 10.1046/j.1365-313x.2000.00868.x. PubMed DOI