Analysis of Advanced Pore Morphology (APM) Foam Elements Using Compressive Testing and Time-Lapse Computed Microtomography

. 2021 Oct 08 ; 14 (19) : . [epub] 20211008

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34640294

Advanced pore morphology (APM) foam elements are almost spherical foam elements with a solid outer shell and a porous internal structure mainly used in applications with compressive loading. To determine how the deformation of the internal structure and its changes during compression are related to its mechanical response, in-situ time-resolved X-ray computed microtomography experiments were performed, where the APM foam elements were 3D scanned during a loading procedure. Simultaneously applying mechanical loading and radiographical imaging enabled new insights into the deformation behaviour of the APM foam samples when the mechanical response was correlated with the internal deformation of the samples. It was found that the highest stiffness of the APM elements is reached before the appearance of the first shear band. After this point, the stiffness of the APM element reduces up to the point of the first self-contact between the internal pore walls, increasing the sample stiffness towards the densification region.

Zobrazit více v PubMed

Borovinšek M., Vesenjak M., Higa Y., Shimojima K., Ren Z. Characterization of geometrical changes of spherical Advanced Pore Morphology (APM) foam elements during compressive deformation. Materials. 2019;12:1088. doi: 10.3390/ma12071088. PubMed DOI PMC

Vesenjak M., Borovinšek M., Fiedler T., Higa Y., Ren Z. Structural characterisation of advanced pore morphology (APM) foam elements. Mater. Lett. 2013;110:201–203. doi: 10.1016/j.matlet.2013.08.026. DOI

Sulong M.A., Vesenjak M., Belova I.V., Murch G.E., Fiedler T. Compressive properties of Advanced Pore Morphology (APM) foam elements. Mater. Sci. Eng. A. 2014;607:498–504. doi: 10.1016/j.msea.2014.04.037. DOI

Stöbener K., Baumeister J., Rausch G., Busse M. Advanced Pore Morphology (APM) Metal Foams. High Temp. Mater. Process. 2007;26:231–238. doi: 10.1515/HTMP.2007.26.4.231. DOI

Stöbener K. Advanced Pore Morphology (APM)—Aluminiumschaum. University of Bremen; Bremen, Germany: 2007.

Stöbener K., Lehmhus D., Avalle M., Peroni L., Busse M. Aluminum foam-polymer hybrid structures (APM aluminum foam) in compression testing. Int. J. Solids Struct. 2008;45:5627–5641. doi: 10.1016/j.ijsolstr.2008.06.007. DOI

Baumeister J., Monno M., Goletti M., Mussi V., Weise J. Dynamic Behavior of Hybrid APM (Advanced Pore Morphology Foam) and Aluminum Foam Filled Structures. Metals. 2012;2:211–218. doi: 10.3390/met2020211. DOI

Kovačič A., Novak N., Vesenjak M., Dobnik Dubrovski P., Ren Z. Geometrical and mechanical properties of polyamide PA 12 bonds in composite advanced pore morphology (APM) foam structures. Arch. Civ. Mech. Eng. 2018;18:1198–1206. doi: 10.1016/j.acme.2018.01.004. DOI

Weise J., Queiroz Barbosa A.F., Yezerska O., Lehmhus D., Baumeister J. Mechanical Behavior of Particulate Aluminium-Epoxy Hybrid Foams Based on Cold-Setting Polymers. Adv. Eng. Mater. 2017;19:1700090. doi: 10.1002/adem.201700090. DOI

Lehmhus D., Weise J., Baumeister J. Cellular Metals—From Aluminium Foams to Iron/Steel Matrix Syntactic Foams. Wiley; Hoboken, NJ, USA: 2017.

Vesenjak M., Gacnik F., Krstulovic-Opara L., Ren Z. Behavior of composite advanced pore morphology foam. J. Compos. Mater. 2011;45:2823–2831. doi: 10.1177/0021998311410489. DOI

Vesenjak M., Gačnik F., Krstulović-Opara L., Ren Z. Mechanical Properties of Advanced Pore Morphology Foam Elements. Mech. Adv. Mater. Struct. 2015;22:359–366. doi: 10.1080/15376494.2012.736059. DOI

Hohe J., Hardenacke V., Fascio V., Girard Y., Baumeister J., Stöbener K., Weise J., Lehmhus D., Pattofatto S., Zeng H., et al. Numerical and experimental design of graded cellular sandwich cores for multi-functional aerospace applications. Mater. Des. 2012;39:20–32. doi: 10.1016/j.matdes.2012.01.043. DOI

Lehmhus D., Vesenjak M., de Schampheleire S., Fiedler T. From stochastic foam to designed structure: Balancing cost and performance of cellular metals. Materials. 2017;10:922. doi: 10.3390/ma10080922. PubMed DOI PMC

Fiedler T., Sulong M.A., Vesenjak M., Higa Y., Belova I.V., Öchsner A., Murch G.E. Determination of the thermal conductivity of periodic APM foam models. Int. J. Heat Mass Transf. 2014;73:826–833. doi: 10.1016/j.ijheatmasstransfer.2014.02.056. DOI

Šleichrt J., Fíla T., Koudelka P., Adorna M., Falta J., Zlámal P., Glinz J., Neuhäuserová M., Doktor T., Mauko A., et al. Dynamic penetration of cellular solids: Experimental investigation using Hopkinson bar and computed tomography. Mater. Sci. Eng. A. 2021;800:140096. doi: 10.1016/j.msea.2020.140096. DOI

Duarte I., Vesenjak M., Krstulović-Opara L., Ren Z. Compressive performance evaluation of APM (Advanced Pore Morphology) foam filled tubes. Compos. Struct. 2015;134:409–420. doi: 10.1016/j.compstruct.2015.08.097. DOI

Vesenjak M., Duarte I., Baumeister J., Göhler H., Krstulović-Opara L., Ren Z. Bending performance evaluation of aluminium alloy tubes filled with different cellular metal cores. Compos. Struct. 2020;234:111748. doi: 10.1016/j.compstruct.2019.111748. DOI

Duarte I., Krstulović-Opara L., Dias-de-Oliveira J., Vesenjak M. Axial crush performance of polymer-aluminium alloy hybrid foam filled tubes. Thin-Walled Struct. 2019;138:124–136. doi: 10.1016/j.tws.2019.01.040. DOI

Lehmhus D., Baumeister J., Stutz L., Schneider E., Stöbener K., Avalle M., Peroni L., Peroni M. Mechanical Characterization of Particulate Aluminum Foams—Strain-Rate, Density and Matrix Alloy versus Adhesive Effects. Adv. Eng. Mater. 2010;12:596–603. doi: 10.1002/adem.200900315. DOI

Ulbin M., Borovinšek M., Higa Y., Shimojima K., Vesenjak M., Ren Z. Internal structure characterisation of AlSi7 and AlSi10 advanced pore morphology (APM) foam elements. Mater. Lett. 2014;136:416–419. doi: 10.1016/j.matlet.2014.08.056. DOI

Vásárhelyi L., Kónya Z., Kukovecz Á., Vajtai R. Microcomputed tomography–based characterisation of advanced materials: A review. Mater. Today Adv. 2020;8:100084. doi: 10.1016/j.mtadv.2020.100084. DOI

Fernández M.P., Kao A.P., Witte F., Arora H., Tozzi G. Low-cycle full-field residual strains in cortical bone and their influence on tissue fracture evaluated via in situ stepwise and continuous X-ray computed tomography. J. Biomech. 2020;113:110105. doi: 10.1016/j.jbiomech.2020.110105. PubMed DOI

Vavrik D., Benes P., Fila T., Koudelka P., Kumpova I., Kytyr D., Vopalensky M., Vavro M., Vavro L. Local fracture toughness testing of sandstone based on X-ray tomographic reconstruction. Int. J. Rock Mech. Min. Sci. 2021;138:104578. doi: 10.1016/j.ijrmms.2020.104578. DOI

Elkhoury J.E., Shankar R., Ramakrishnan T.S. Resolution and Limitations of X-Ray Micro-CT with Applications to Sandstones and Limestones. Transp. Porous Media. 2019;129:413–425. doi: 10.1007/s11242-019-01275-1. DOI

Wan T., Liu Y., Zhou C., Chen X., Li Y. Fabrication, properties, and applications of open-cell aluminum foams: A review. J. Mater. Sci. Technol. 2021;62:11–24. doi: 10.1016/j.jmst.2020.05.039. DOI

Nickerson S., Shu Y., Zhong D., Könke C., Tandia A. Permeability of porous ceramics by X-ray CT image analysis. Acta Mater. 2019;172:121–130. doi: 10.1016/j.actamat.2019.04.053. DOI

Senck S., Glinz J., Happl M., Scheerer M., Reiter T., Kastner J. Quantification of surface-near porosity in additively manufactured aluminum brackets using x-ray microcomputed tomography; Proceedings of the AIAA Scitech 2021 Forum; Nashville, TN, USA. 11–15 January 2021; Reston, VA, USA: American Institute of Aeronautics and Astronautics Inc.; 2021. pp. 1–7.

Parveez B., Jamal N.A., Maleque A., Yusof F., Jamadon N.H., Adzila S. Review on advances in porous Al composites and the possible way forward. J. Mater. Res. Technol. 2021;14:2017–2038. doi: 10.1016/j.jmrt.2021.07.055. DOI

Afolabi L.O., Ariff Z.M., Hashim S.F.S., Alomayri T., Mahzan S., Kamarudin K.A., Muhammad I.D. Syntactic foams formulations, production techniques, and industry applications: A review. J. Mater. Res. Technol. 2020;9:10698–10718. doi: 10.1016/j.jmrt.2020.07.074. DOI

Li Y., Jahr H., Zhou J., Zadpoor A.A. Additively manufactured biodegradable porous metals. Acta Biomater. 2020;115:29–50. doi: 10.1016/j.actbio.2020.08.018. PubMed DOI

Benedetti M., du Plessis A., Ritchie R.O., Dallago M., Razavi S.M.J., Berto F. Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication. Mater. Sci. Eng. R Rep. 2021;144:100606. doi: 10.1016/j.mser.2021.100606. DOI

Hassanli F., Paydar M.H. Improvement in energy absorption properties of aluminum foams by designing pore-density distribution. J. Mater. Res. Technol. 2021;14:609–619. doi: 10.1016/j.jmrt.2021.06.073. DOI

Li W., Xu K., Li H., Jia H., Liu X., Xie J. Energy Absorption and Deformation Mechanism of Lotus-type Porous Coppers in Perpendicular Direction. J. Mater. Sci. Technol. 2017;33:1353–1361. doi: 10.1016/j.jmst.2017.01.009. DOI

Hao M., Wei C., Liu X., Ge Y., Cai J. Quantitative evaluation on mechanical characterisation of Ti6Al4V porous scaffold designed based on Weaire-Phelan structure via experimental and numerical analysis methods. J. Alloys Compd. 2021;885:160234. doi: 10.1016/j.jallcom.2021.160234. DOI

Wu F., Liu T., Xiao X., Zhang Z., Hou J. Static and dynamic crushing of novel porous crochet-sintered metal and its filled composite tube. Compos. Struct. 2019;209:830–843. doi: 10.1016/j.compstruct.2018.11.022. DOI

Hajizadeh M., Yazdani M., Vesali S., Khodarahmi H., Mirzababaie Mostofi T. An experimental investigation into the quasi-static compression behavior of open-cell aluminum foams focusing on controlling the space holder particle size. J. Manuf. Process. 2021;70:193–204. doi: 10.1016/j.jmapro.2021.08.043. DOI

Forna-Kreutzer J.P., Ell J., Barnard H., Pirzada T.J., Ritchie R.O., Liu D. Full-field characterisation of oxide-oxide ceramic-matrix composites using X-ray computed micro-tomography and digital volume correlation under load at high temperatures. Mater. Des. 2021;208:109899. doi: 10.1016/j.matdes.2021.109899. DOI

Fernández M.P., Kao A.P., Bonithon R., Howells D., Bodey A.J., Wanelik K., Witte F., Johnston R., Arora H., Tozzi G. Time-resolved in situ synchrotron-microCT: 4D deformation of bone and bone analogues using digital volume correlation. Acta Biomater. 2021;131:424–439. doi: 10.1016/j.actbio.2021.06.014. PubMed DOI

Hangai Y., Kawato D., Ohashi M., Ando M., Ogura T., Morisada Y., Fujii H., Kamakoshi Y., Mitsugi H., Amagai K. X-ray Radiography Inspection of Pores of Thin Aluminum Foam during Press Forming Immediately after Foaming. Metals. 2021;11:1226. doi: 10.3390/met11081226. DOI

Heitor D., Duarte I., Dias-De-oliveira J. Aluminium alloy foam modelling and prediction of elastic properties using x-ray microcomputed tomography. Metals. 2021;11:925. doi: 10.3390/met11060925. DOI

Marone F., Studer A., Billich H., Sala L., Stampanoni M. Towards on-the-fly data post-processing for real-time tomographic imaging at TOMCAT. Adv. Struct. Chem. Imaging. 2017;3:1–11. doi: 10.1186/s40679-016-0035-9. PubMed DOI PMC

Kytýř D., Zlámal P., Koudelka P., Fíla T., Krčmářová N., Kumpová I., Vavřík D., Gantar A., Novak S. Deformation analysis of gellan-gum based bone scaffold using on-the-fly tomography. Mater. Des. 2017;134:400–417. doi: 10.1016/j.matdes.2017.08.036. DOI

Costanza G., Giudice F., Sili A., Tata M.E. Correlation Modeling between Morphology and Compression Behavior of Closed-Cell Al Foams Based on X-ray Computed Tomography Observations. Metals. 2021;11:1370. doi: 10.3390/met11091370. DOI

Ghazi A., Berke P., Tiago C., Massart T.J. Computed tomography based modelling of the behaviour of closed cell metallic foams using a shell approximation. Mater. Des. 2020;194:108866. doi: 10.1016/j.matdes.2020.108866. DOI

Jiroušek O., Doktor T., Kytýř D., Zlámal P., Fíla T., Koudelka P., Jandejsek I., Vavřík D. X-ray and finite element analysis of deformation response of closed-cell metal foam subjected to compressive loading. J. Instrum. 2013;8:C02012. doi: 10.1088/1748-0221/8/02/C02012. DOI

Fíla T., Šleichrt J., Kytýř D., Kumpová I., Vopálenský M., Zlámal P., Rada V., Vavřík D., Koudelka P., Senck S. Deformation analysis of the spongious sample in simulated physiological conditions based on in-situ compression, 4D computed tomography and fast readout detector. J. Instrum. 2018;13:C11021. doi: 10.1088/1748-0221/13/11/C11021. DOI

Rada V., Fíla T., Zlámal P., Kytýř D., Koudelka P. Multi-channel control system for in-situ laboratory loading devices; Proceedings of the 16th Youth Symposium on Experimental Solid Mechanics; YSESM, Traunkirchen Monastery, Austria. 17–19 May 2018; Prague, Czech Republic: Czech Technical University in Prague; 2018. pp. 15–19.

Miao H., Zhao H.J., Gao F., Gong S.R. Implementation of FDK reconstruction algorithm in cone-beam CT based on the 3D Shepp-Logan Model; Proceedings of the BMEI 2009: 2nd International Conference on Biomedical Engineering and Informatics; Tianjin, China. 17–19 October 2009.

Wang X., Zhou Y., Li J., Li H. Uniaxial compression mechanical properties of foam nickel/iron-epoxy interpenetrating phase composites. Materials. 2021;14:3523. doi: 10.3390/ma14133523. PubMed DOI PMC

Gibson L.J., Ashby M.F. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press; Cambridge, UK: 1997.

Byakova A., Gnyloskurenko S., Vlasov A., Semenov N., Yevych Y., Zatsarna O., Danilyuk V. Effect of Cell Wall Ductility and Toughness on Compressive Response and Strain Rate Sensitivity of Aluminium Foam. Adv. Mater. Sci. Eng. 2019;2019:3474656. doi: 10.1155/2019/3474656. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...