Fast 4D On-the-Fly Tomography for Observation of Advanced Pore Morphology (APM) Foam Elements Subjected to Compressive Loading

. 2021 Nov 27 ; 14 (23) : . [epub] 20211127

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34885410

Observation of dynamic testing by means of X-ray computed tomography (CT) and in-situ loading devices has proven its importance in material analysis already, yielding detailed 3D information on the internal structure of the object of interest and its changes during the experiment. However, the acquisition of the tomographic projections is, in general, a time-consuming task. The standard method for such experiments is the time-lapse CT, where the loading is suspended for the CT scan. On the other hand, modern X-ray tubes and detectors allow for shorter exposure times with an acceptable image quality. Consequently, the experiment can be designed in a way so that the mechanical test is running continuously, as well as the rotational platform, and the radiographic projections are taken one after another in a fast, free-running mode. Performing this so-called on-the-fly CT, the time for the experiment can be reduced substantially, compared to the time-lapse CT. In this paper, the advanced pore morphology (APM) foam elements were used as the test objects for in-situ X-ray microtomography experiments, during which series of CT scans were acquired, each with the duration of 12 s. The contrast-to-noise ratio and the full-width-half-maximum parameters are used for the quality assessment of the resultant 3D models. A comparison to the 3D models obtained by time-lapse CT is provided.

Zobrazit více v PubMed

Wevers M., Nicolai B., Verboven P., Swennen R., Roels S., Verstrynge E., Lomov S., Kerckhofs G., Van Meerbeek B., Mavridou A.M., et al. CT to Characterise the Behavior of Materials. In: Carmignato S., Dewulf W., Leach R., editors. Industrial X-ray Computed Tomography. 1st ed. Springer; Cham, Switzerland: 2018. pp. 293–298.

Vásárhelyi L., Kónya Z., Kukovecz, Vajtai R. Microcomputed tomography–based characterisation of advanced materials: A review. Mater. Today Adv. 2020;8:100084. doi: 10.1016/j.mtadv.2020.100084. DOI

Forna-Kreutzer J.P., Ell J., Barnard H., Pirzada T.J., Ritchie R.O., Liu D. Full-field characterisation of oxide-oxide ceramic-matrix composites using X-ray computed micro-tomography and digital volume correlation under load at high temperatures. Mater. Des. 2021;208:109899. doi: 10.1016/j.matdes.2021.109899. DOI

Fila T., Sleichrt J., Kytyr D., Kumpova I., Vopalensky M., Zlamal P., Rada V., Vavrik D., Koudelka P., Senck S. Proceedings of the Journal of Instrumentation. Volume 13. IOP Publishing; Bristol, UK: 2018. Deformation analysis of the spongious sample in simulated physiological conditions based on in-situ compression, 4D computed tomography and fast readout detector; p. C11021.

Costanza G., Giudice F., Sili A., Tata M.E. Correlation Modeling between Morphology and Compression Behavior of Closed-Cell Al Foams Based on X-ray Computed Tomography Observations. Metals. 2021;11:1370. doi: 10.3390/met11091370. DOI

Takano H., Morikawa M., Konishi S., Azuma H., Shimomura S., Tsusaka Y., Nakano S., Kosaka N., Yamamoto K., Kagoshima Y. Development of real-time X-ray microtomography system. J. Phys. Conf. Ser. 2013;463:012025. doi: 10.1088/1742-6596/463/1/012025. DOI

Borovinsek M., Vesenjak M., Higa Y., Shimojima K., Ren Z. Characterization of geometrical changes of spherical Advanced Pore Morphology (APM) foam elements during compressive deformation. Materials. 2019;12:1088. doi: 10.3390/ma12071088. PubMed DOI PMC

Vesenjak M., Borovinsek M., Fiedler T., Higa Y., Ren Z. Structural characterisation of advanced pore morphology (APM) foam elements. Mater. Lett. 2013;110:201–203. doi: 10.1016/j.matlet.2013.08.026. DOI

Sleichrt J., Fila T., Koudelka P., Adorna M., Falta J., Zlamal P., Glinz J., Neuhauserova M., Doktor T., Mauko A., et al. Dynamic penetration of cellular solids: Experimental investigation using Hopkinson bar and computed tomography. Mater. Sci. Eng. A. 2021;800:140096. doi: 10.1016/j.msea.2020.140096. DOI

Baumeister J., Monno M., Goletti M., Mussi V., Weise J. Dynamic Behavior of Hybrid APM (Advanced Pore Morphology Foam) and Aluminum Foam Filled Structures. Metals. 2012;2:211–218. doi: 10.3390/met2020211. DOI

Hohe J., Hardenacke V., Fascio V., Girard Y., Baumeister J., Stöbener K., Weise J., Lehmhus D., Pattofatto S., Zeng H., et al. Numerical and experimental design of graded cellular sandwich cores for multi-functional aerospace applications. Mater. Des. 2012;39:20–32. doi: 10.1016/j.matdes.2012.01.043. DOI

Lehmhus D., Vesenjak M., de Schampheleire S., Fiedler T. From stochastic foam to designed structure: Balancing cost and performance of cellular metals. Materials. 2017;10:922. doi: 10.3390/ma10080922. PubMed DOI PMC

Busse M., Rausch G., Stobener K., Baumeister J. High Te. Fraunhofer Institut Fertigungstechnik Materialforschung (IFAM); Bremen, Germany: 2007. Advanced Pore Morphology (APM) Metal Foams.

Stobener K. Advanced Pore Morphology (APM)—Aluminiumschaum. University of Bremen; Bremen, Germany: 2007.

Weise J., Queiroz Barbosa A.F., Yezerska O., Lehmhus D., Baumeister J. Mechanical Behavior of Particulate Aluminium-Epoxy Hybrid Foams Based on Cold-Setting Polymers. Adv. Eng. Mater. 2017;19:1700090. doi: 10.1002/adem.201700090. DOI

Lehmhus D., Weise J., Baumeister J. Iron Matrix Syntactic Foams. DEStech Publications, Inc.; Lancester, PA, USA: 2017. Cellular metals—From aluminium foams to iron/steel matrix syntactic foams; pp. 201–245.

Stobener K., Lehmhus D., Avalle M., Peroni L., Busse M. Aluminum foam-polymer hybrid structures (APM aluminum foam) in compression testing. Int. J. Solids Struct. 2008;45:5627–5641. doi: 10.1016/j.ijsolstr.2008.06.007. DOI

Vesenjak M., Gacnik F., Krstulović-Opara L., Ren Z. Mechanical Properties of Advanced Pore Morphology Foam Elements. Mech. Adv. Mater. Struct. 2015;22:359–366. doi: 10.1080/15376494.2012.736059. DOI

Lehmhus D., Baumeister J., Stutz L., Schneider E., Stobener K., Avalle M., Peroni L., Peroni M. Mechanical Characterization of Particulate Aluminum Foams—Strain-Rate, Density and Matrix Alloy versus Adhesive Effects. Adv. Eng. Mater. 2010;12:596–603. doi: 10.1002/adem.200900315. DOI

Pena Fernandez M., Kao A.P., Bonithon R., Howells D., Bodey A.J., Wanelik K., Witte F., Johnston R., Arora H., Tozzi G. Time-resolved in situ synchrotron-microCT: 4D deformation of bone and bone analogues using digital volume correlation. Acta Biomater. 2021;131:424–439. doi: 10.1016/j.actbio.2021.06.014. PubMed DOI

Hangai Y., Kawato D., Ohashi M., Ando M., Ogura T., Morisada Y., Fujii H., Kamakoshi Y., Mitsugi H., Amagai K. X-ray Radiography Inspection of Pores of Thin Aluminum Foam during Press Forming Immediately after Foaming. Metals. 2021;11:1226. doi: 10.3390/met11081226. DOI

Heitor D., Duarte I., Dias-De-oliveira J. Aluminium alloy foam modelling and prediction of elastic properties using X-ray microcomputed tomography. Metals. 2021;11:925. doi: 10.3390/met11060925. DOI

Borovinsek M., Koudelka P., Sleichrt J., Vopalensky M., Kumpova I., Vesenjak M., Kytyr D. Analysis of Advanced Pore Morphology (APM) Foam Elements Using Compressive Testing and Time-Lapse Computed Microtomography. Materials. 2021;14:5897. doi: 10.3390/ma14195897. PubMed DOI PMC

Marone F., Studer A., Billich H., Sala L., Stampanoni M. Towards on-the-fly data post-processing for real-time tomographic imaging at TOMCAT. Adv. Struct. Chem. Imaging. 2017;3:1. doi: 10.1186/s40679-016-0035-9. PubMed DOI PMC

Kytyr D., Zlamal P., Koudelka P., Fila T., Krcmarova N., Kumpova I., Vavrik D., Gantar A., Novak S. Deformation analysis of gellan-gum based bone scaffold using on-the-fly tomography. Mater. Des. 2017;134:400–417. doi: 10.1016/j.matdes.2017.08.036. DOI

Fila T., Vavrik D. A Multi-Axial Apparatus for Carrying out X-ray Measurements, Particularly Computed. EP 2835631. Tomography. Patent. 2016 February 24;

APR Hardware Manual. [(accessed on 4 October 2021)]. Available online: https://manual-hub.com/manuals/aerotech-apr150dr-01-pdf-manual/

XSW-240-SE. [(accessed on 12 October 2021)]. Available online: www.x-ray-worx.com.

1512N CMOS Industrial Flat Panel Detectors. [(accessed on 4 October 2021)]. Available online: https://www.vareximaging.com/products/flat-panel-detectors/1512n.

Vopalensky M., Vavrik D., Kumpova I. Optimization of Acquisition Parameters in Radiography and Tomography. [(accessed on 4 October 2021)]. NDT.net 2017-03. Available online: https://www.ndt.net/events/iCT2017/app/content/Paper/54_Vopalensky.pdf.

Miao H., Zhao H.J., Gao F., Gong S.R. Implementation of FDK reconstruction algorithm in cone-beam CT based on the 3D Shepp-Logan Model; Proceedings of the 2009 2nd International Conference on Biomedical Engineering and Informatics, BMEI 2009; Tianjin, China. 17–19 October 2009.

Gaussian Function. [(accessed on 4 October 2021)]. Available online: https://mathworld.wolfram.com/GaussianFunction.html.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...